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Abstract. The Bottleneck-Bandwidth and Round-trip (BBR) conges-
tion control algorithm was introduced by Google in 2016. Unlike prior
congestion-control algorithms (CCAs), BBR does not rely on signals
that are weakly correlated with congestion (e.g., packet loss and tran-
sient queue delay). Instead, it characterizes a path using two parameters,
bottleneck bandwidth and round-trip propagation time, and is designed
to converge with a high probability to Kleinrock’s optimal operating
point [34]. Essentially, in stable state, BBR maximizes throughput while
minimizing delay and loss. Google has used BBR for a significant fraction
of its network traffic both within its datacenters and on its WAN since
2017 [15]. BBR’s interaction dynamics with Cubic, the widely used CCA
in the Internet, has received intense scrutiny: Some studies observed
BBR to be unfair to Cubic, or generally loss-based CCAs. Google, to
its credit, has diligently revised BBR’s design to address the criticisms.
This paper focuses on characterizing the promises and potential of the
third, and most recent, revision of BBR—introduced to the public in
July 2023. We empirically evaluate BBRv3’s performance across a range
of network scenarios, e.g., considering different buffer sizes, round-trip
times, packet losses, and flow-size distributions. We show that despite
the improvements and optimizations introduced in BBRv3, it struggles
to achieve an equitable sharing of bandwidth when competing with Cu-
bic, the widely used CCA in the Internet, in a wide range of network
conditions.
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1 Introduction

Bottleneck Bandwidth and Round-trip (BBR) is a relatively new congestion con-
trol algorithm (CCA) that takes a proactive approach in detecting congestion on
a network path. It is designed to enable a sender to converge with a high proba-
bility to Kleinrock’s optimal operating point [34], which maximizes throughput
while minimizing both delay and loss. To this end, BBR estimates the bottle-
neck bandwidth and round-trip propagation time of a path, and paces the sender
appropriately to avoid building any queue along the path. It has fast replaced
Cubic for all TCP flows on Google’s B4 WAN [9,13]; for context, Google’s WAN
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traffic makes up 13.85% of all Internet traffic [41]. Since BBR runs purely on the
sender side, a sample of Google’s edge-to-end-user traffic (i.e., content served on
google.com and youtube.com) has been delivered using BBR from as early as
2016 [9]. More recently, Google announced that they use BBR(v3) for all internal
WAN traffic and public Internet traffic served from google.com [8].

It is quite challenging to design a CCA that works reasonably well in a
wide range of network conditions. Traffic characteristics, round-trip times, and
bottleneck buffers—to name a few parameters—may differ substantially from
one network to another. Unsurprisingly, though Google designed BBR by an-
alyzing traces of world-wide network traffic [13], several independent studies
and reports have reported it to be highly unfair to other CCAs in the In-
ternet [7,50,26,42,49,28,17,43,2]. In particular, its incompatibility with Cubic,
one of the widely used loss-based CCAs in the Internet, has received much
scrutiny [28,17,2]. Google, to its credit, has been diligently evolving BBR to
address the concerns raised, and its efforts recently culminated with the release
of BBRv3, in 2023 [12]. We focus on the performance and fairness claims (or
“promises”) of this most recent version of BBR in this work.

BBR builds a model of the network path based on the bottleneck band-
width and round-trip propagation time measured from each ACK. BBRv1 used
this model to pace the sender at a rate equal to the estimated bottleneck band-
width, while keeping the in-flight data quite close to the bandwidth-delay prod-
uct (BDP). Google reported that BBRv1 achieves high throughput under ran-
dom packet losses as high as 15% and maintains small queues regardless of
buffer size [9]. In-depth evaluations revealed, however, BBRv1 to be extremely
aggressive when competing with loss-based CCAs and unfair in shallow buffer
scenarios [7,50,26,42]. Besides, studies also observed increased retransmission
rate [7,26,42], high RTT unfairness and queue occupancy [7,49,26], and ACK
aggregation issues in WiFi and cellular networks [11]. BBRv2 was released in
2019 to address these issues; chief among its changes was the inclusion of loss
as a congestion signal. It reacted to explicit congestion notifications (ECNs)
and optimized the congestion-window (cwnd) update logic. Despite the inter-
CCA and RTT fairness improvements that Google reported [11,14], indepen-
dent evaluations showed it suffering from low link utilization and being unfair
to loss-based CCAs in deep buffer scenarios [37,30,45]. BBRv3, the most recent
release introduced in July 2023, claimed to address these concerns. In particular,
BBRv3 (a) claimed to offer quick bandwidth convergence to fair shares both with
and without loss or ECN signals and (b) boasted of optimizations to minimize
queuing delays and packet losses both during and shortly after slow start (i.e.,
STARTUP) [8].

Thoroughly evaluating a CCA to determine whether it falls short of its
promises and, most importantly, along what dimensions and how, is an ardu-
ous task. The environment (e.g., a datacenter or private WAN) in which the
CCA is originally designed, or for which it was specifically developed, may in-
troduce implicit assumptions (for instance, about network conditions or traffic
scenarios), which may not hold in the environment where the CCA is even-
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tually deployed (e.g., public Internet). The literature has several examples of
CCAs whose behavior in real-world network conditions significantly deviated
from that observed in the controlled environments where they were designed
and tested (e.g., [51,20,40]). In case of BBR, the conflicting observations between
Google’s internal evaluations and the various external evaluations—of BBRv1
and BBRv2—clearly attest to the challenges in accurately evaluating its perfor-
mance. We bridge this conflict by designing a set of experiments—based on first
principles—that unequivocally demonstrate whether BBRv3 holds its promises
and where there is potential for improvement. Along the way, we outline a sys-
tematic and principled approach for evaluating a CCA in practice.

In this work, we empirically analyze the performance of BBRv3 in a wide
range of network conditions. In particular, we investigate its claims of quick
(throughput) convergence to fair shares in deep and shallow buffer scenarios,
and of its improved compatibility (compared to BBRv1 and BBRv2) with loss-
based CCAs. An accurate evaluation of these claims has substantial implications
for BBR’s deployment in the public Internet, since Google is transitioning more
and more of its end-user facing traffic to use BBR. Consequently, we evaluate
BBR in network scenarios where both long-lived (i.e., elephant) and short-lived
(i.e., mouse) flows compete for bandwidth on a shared link. Our choice of using
different sizes of flows is based on prior work that demonstrated that while short-
lived flows contribute most packets to Internet traffic, long-lived flows contribute
most bytes [4,56].

We summarize our contributions as follows.
⋆ We present a first independent empirical evaluation of BBRv3, Google’s

newest version of BBR, across a range of network conditions and justify the
rationale behind our choice of evaluation settings. We focus our evaluation, in
particular, on BBRv3’s promises to (a) share bandwidth equitably with other
loss-based CCAs, particularly in deep buffer scenarios, and (b) assure fairness
when contending for throughput with flows that experience different RTTs, a
common case in the public Internet where BBRv3 is increasingly being deployed.

⋆ Our evaluations show that BBRv3’s throughput unfairness towards loss-
based CCAs, i.e., Cubic, is nearly identical to BBRv1’s behavior and is exac-
erbated in shallow buffers. We find that BBR’s bias towards long-RTT flows
persists in BBRv3, with the unfairness magnified when the difference in RTTs
of competing flows is significant. Cubic, the widely used CCA in the Internet, in
comparison, offers better throughput for flows with short RTTs than long RTTs.

⋆ We release our network testbed configuration, data sets, and scripts for
experiment orchestration and analyses [54].

2 Background

BBR enables a sender to maximize delivery rate while minimizing delay and
loss, i.e., converge to Kleinrock’s optimal operating point [34]. To this end, it
employs a sequential probing state machine that periodically alternates between
probing for higher bandwidths (by increasing the delivery rate) and testing for
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Table 1: An overview of the key changes between the three BBR versions.
Life cycle phases Property BBRv1 BBRv2 BBRv3

Startup
cwnd_gain 2/ln 2 (∼ 2.89) 2/ln 2 (∼ 2.89) 2.00

pacing_gain 2/ln 2 (∼ 2.89) 2/ln 2 (∼ 2.89) 2.77
Max. cwnd 3xBDP – –

inflight_hi – max.cwnd max(est. BDP, last cwnd)
Exit send. rate <25% for 3 consec. RTTs loss/ECN rate >= thresh. (8) loss/ECN rate >= thresh. (6)

Drain pacing_gain 0.35
Exit cwnd <= 1xBDP

ProbeBW Phases 8 fixed gain cycles {Cruise, Refill, Up, Down} {Cruise, Refill, Up, Down}
* Cycle=RTprop cwnd limits={inflight_hi,inflight_lo} –

cwnd_gain – cwnd_gain(Up)=2.0 cwnd_gain(Up)=2.25
pacing_gain [1.25,0.75,1,1,1,1,1,1] pacing_gain(Down)=0.75 pacing_gain(Down)=0.90

Exit cwnd>= (pacing_gain x BDP) or loss loss/ECN rate >= thresh. loss/ECN rate >= thresh.

ProbeRTT
Frequency 10 s 5 s 5 s

cwnd 4 BDP/2
Duration 200ms + RTprop – –

lower RTTs (by draining the bottleneck queue) of a path. It then uses these
bandwidth and RTT measurements to build a path model that determines var-
ious congestion control parameters of a TCP implementation such as cwnd and
pacing rate [9]. Since its introduction in 2016, BBR has underwent three major
iterations, and Tab. 1 summarizes the key differences between these versions.

BBRv1 The first version of BBR used four phases: Startup, Drain, ProbeBW
(or Probe Bandwidth), and ProbeRTT [9]. The Startup phase grows the sending
rate exponentially, similar to NewReno, Vegas, and Cubic, but it uses a win-
dow increase factor (i.e., cwnd_gain) of 2/ln 2. Once the bottleneck bandwidth
estimate “plateaus” (i.e., three attempts to double the delivery rate results in
increasing it by less than 25%), it exits the Startup phase. To drain the queue
that the Startup may have built, BBRv1 then enters the Drain phase, by re-
ducing its pacing_gain to 0.75. A BBR flow spends the majority of its time in
the ProbeBW phase, where it probes for bandwidth via gain cycling. Essentially,
BBRv1 cycled through a sequence of eight values for pacing_gain—5/4, 3/4,
1, 1, 1, 1—where a gain higher than one indicates a probe for higher bandwidth
and a gain lesser than one represents the attempt to drain any queue built
earlier. With the average of the eight values being one, the approach allowed
ProbeBW to maintain an average pacing rate that is equal to the estimated
bandwidth. BBRv1 continuously sampled the bottleneck bandwidth during this
phase. Every 10 seconds, BBRv1 stopped the ProbeBW phase and entered the
ProbeRTT phase. It reduced its cwnd to four packets for as long as 200ms and
one round-trip. The low rate drains the bottleneck queue and allows the sender
to sample the minimum propagation RTT of the path; it is only in this phase
that BBR updates its minimum RTT estimate. Several studies revealed, however,
that BBRv1 was extremely aggressive when competing with loss-based CCAs,
and highly unfair in shallow buffer scenarios [7,50,26,42,28].

BBRv2 Google introduced BBRv2 in 2019 to alleviate the problems with
BBRv1 [13,14]. BBRv2 split the ProbeBW phase into four new sub-phases:
Down, Cruise, Refill, and Up. Unlike BBRv1, it reacted to loss or ECN sig-
nals to facilitate an equitable sharing of bandwidths with widely used CCAs
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Fig. 1: An overview of (a) BBRv3’s high-level implementation architecture & (b)
the life cycle of the CCA showing how it transitions phases of congestion control.

such as Cubic and NewReno [14]. In BBRv2, the Startup phase ends not only
when the bandwidth estimate “plateaus,” but also if loss or ECN mark rate ex-
ceeds a threshold (i.e., 2%). It capped the maximum in-flight data volume to
the maximum congestion window observed, prior to entering the Drain phase.
During ProbeBW, BBRv2 picks the maximum bandwidth measured in the last
two ProbeBW attempts instead of the last 10 RTTs as in the case of BBRv1.
BBRv2 maintained three different pacing_gain values to bypass the issue of
2xBDP in-flight cap, which was identified in prior work as the primary source
of unfairness in BBRv1 [50]: 1.25 for Probe:Down, 0.75 for ProbeBW:Up, and 1
for both ProbBW:Cruise and ProbeBW:Refill. BBRv2 also replaced the 8-phase
cycle for ProbeBW with an adaptive probing time, i.e., a value picked at random
between 2-3 seconds, for improving compatibility with Cubic and NewReno.

BBRv3 BBRv3 was introduced in July 2023 at the 117th IETF meeting [8].
Fig. 1 illustrates both the high-level implementation architecture and the life
cycle of the CCA, showing how it transitions between the different congestion
control phases. BBRv3 is a minor revision of BBRv2, and it addresses two key
performance issues of BBRv2. First, an implementation change caused BBRv2
to prematurely exit the ProbeBW phase that in turn prevented it from sharing
bandwidth equitably with BBRv1 or loss-based CCAs such as Cubic [8]. The
issue resulted in under-utilization of the link even after the link was no longer
congested. BBRv3, hence, continues probing for bandwidth until (a) the loss
rate or ECN mark rate is below a set threshold (i.e., 2%) or (b) the bandwidth
saturates even if the delivery rate is not restricted by the inflight_hi threshold.
Second, the choice of parameter values (e.g., cwnd_gain and pacing_gain) used
in the ProbeBW phase made BBRv2 highly unfair: Especially in deep buffer
scenarios if the sender received no loss or ECN signals, it caused the sender to
be unfair to competing flows [8]. To mitigate these fairness concerns, Google
adjusted several parameters, e.g., cwnd_gain, pacing_gain, and inflight_hi,
used in the different congestion control phases, which per their report resulted
in improving the CCA’s performance [8].
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3 Methodology

We empirically evaluate the performance of the three versions of BBR and com-
pare them to that of Cubic using a custom network testbed. The testbed consists
of six Dell R6515 blade servers, each with 16 cores and 128GiB of RAM. We
installed one or two Broadcom NetXtreme BCM5720 25GbE NICs, as required,
on each server and used 25Gbps DACs for interconnecting the servers and four
APS Networks BF6064X-T switches (as shown in Fig. 2). We configured the
servers to run Linux kernel v5.4 (Debian 10). We used two VMs on one of the
servers to evaluate different versions of BBR implementations using the same
machine: One VM ran BBRv2 with Linux kernel v5.13.12 from [22], while the
other ran BBRv3 with Linux kernel v6.4.0 from [23]. We did not enable ECN
support in our testbed, and so neither BBRv2 nor BBRv3 benefited from ECN
in our evaluations. Since BBRv3 promises quick (bandwidth) convergence to fair
share even without loss or ECN signals [8], we assume such a scenario in our
setup and leave the evaluations in the presence of ECN to future work.

N
LE 

 25Gbps
 Bottleneck  

S1 R1 

R2 S2 

N
LE 

Fig. 2: Network testbed for eval-
uating performance of CCAs in
a single bottleneck setup.

To evaluate under a wide range of network
conditions, we varied the capacity of the bot-
tleneck link (in red in Fig. 2) and one-way de-
lays as needed for the different experiments
using the Linux traffic control (tc) utility.
Specifically, we used netem [47] on an inter-
mediate node, designated as the network la-
tency emulator (NLE), between the end hosts
to avoid issues with TCP small queues [31,38].
We also used tc-tbf [1] on the NLE to config-
ure the bottleneck bandwidth and buffer size.
Unless otherwise stated, we added half of the configured delay before the bottle-
neck and half after the bottleneck. The base RTT between sender-receiver pairs
in the testbed, without any added delay, was 1.5ms on average.

To emulate traffic representative of real-world network conditions, we gen-
erated workloads by using flow sizes from a MAWI trace [32] downloaded on
January 5, 2023. We extracted the flows using Zeek [29] and scaled up the inter-
arrival times by a factor of 5 to account for the difference in link capacities
between the MAWI infrastructure and our testbed. The flow sizes in this data
set followed the Pareto distribution, while the inter-arrival times followed the
Lognormal distribution. We then used Harpoon [44] to generate traffic using
samples from these empirical distributions. Unless otherwise stated, we repeated
each experiment three times and reported the statistics across the three runs.

4 Evaluation

We now evaluate the three versions of BBR and Cubic in a wide range of network
conditions. Our goal is to ascertain the ability of each CCA to share the band-
width in a fair or equitable manner with other flows—regardless of whether the
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Fig. 3: Throughput achieved by two similar, synchronous (i.e., starting at the
same time) flows when competing for bandwidth on a bottleneck with a deep
buffer of size 16×BDP.

contending flows use the same CCA or a different one. To this end, we evaluate
fairness in two broad settings: similar and dissimilar flows. Similar flows use the
same CCA and experience the same RTT, but may vary from one another in
size or arrival times (at a bottleneck link). Dissimilar flows, in contrast, differ
from one another based on one or more factors, e.g., choice of CCAs and RTTs
experienced by the flows.

4.1 Similar and synchronous flows

We begin our evaluation with a simple scenario where two similar flows, i.e.,
using the same CCA and experiencing the same RTT (of 100ms), contend for
bandwidth on a bottleneck (refer Fig. 2). We start both flows at the same time
and let them run for a duration of 300 s and plot the throughput experienced by
the flows as a function of time in Fig. 3. Overall, all BBR variants achieve an
equitable bandwidth share when competing with a similar and synchronous flow.
BBRv3 significantly reduces the throughput oscillations and allows the flows to
converge much quicker than either of the earlier two versions. We repeated this
experiment by varying the bottleneck queue size from one-fourth to 16 times
the BDP, doubling the queue size once for each experiment. Although not shown
here, our inferences hold across all these settings.

Fig. 4a indicates whether the flows experience high retransmissions when
competing with another similar, synchronous flow.3 The heatmap reports the
percentage of retransmissions (i.e., ratio of the aggregate number of retransmit-
ted packets to the total number of packets delivered by both flows) experienced
by the two flows; higher values indicate higher retransmissions, and, hence, lower
values (in green) imply better throughput or utilization. Per this figure, although
BBRv1 experiences high retransmissions when competing with another BBRv1
flow started at the same time in low buffer settings, across all other settings, the
CCAs converge quickly without incurring much loss. This observation of high
retransmissions when using BBRv1 in shallow buffers is in line with observations

3 We omit the results for 8× BDP and 16× BDP as we see virtually no retransmissions
in such settings.
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Fig. 4: (a) Retransmissions experienced by and (b) Jain’s fairness index (JFI) of
two similar, synchronous flows competing for bandwidth on a bottleneck link as
a function of bottleneck queue size.
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Fig. 5: Throughput achieved by two similar but staggered flows (i.e., second flow
starts 15 s after the first) when competing for bandwidth on a bottleneck with a
deep buffer of size 16×BDP.

made by prior work [7,26,42]: They are due to BBRv1’ aggressive probing be-
havior and its indifference to loss. The Jain’s fairness index (JFI) for the flows
in Fig. 4b, however, shows that all three versions equitably share the bottleneck
with a similar and synchronous flow, regardless of bottleneck buffer size; BBRv3
shows only a marginal improvement, if any, over the prior two versions.
Takeaways. BBR achieves an equitable sharing of bandwidth with similar syn-
chronous flows, and BBRv3 address the well-documented issues of aggressiveness
and unfairness in BBRv1.

4.2 Similar but staggered flows

We now repeat the earlier evaluation, but with one change: We stagger the flows
so that the second flow starts 15 s after the first. In the Internet flows may arrive
at a bottleneck at random times, when other contending flows on the link have
already started or reached their stable state. The staggering of flows simply
emulates this typical traffic condition.



Promises and Potential of BBRv3 9

BBRv1 BBRv2 BBRv3
CCA

4

2

1

1/2

1/4

BD
P

0.000 0.017 0.033

0.027 0.023 0.023

3.085 0.115 0.467

4.471 0.147 0.406

5.127 0.232 0.377
0

1

2

3

4

5

re
tx

 %

(a) Retransmissions

BBRv1 BBRv2 BBRv3
CCA

16
8
4
2
1

1/2
1/4

BD
P

0.991 0.963 0.922
0.989 0.971 0.981
0.991 0.965 0.963
0.990 0.932 0.975
0.988 0.928 0.974
0.986 0.937 0.971
0.986 0.966 0.978

0.90

0.92

0.94

0.96

0.98

1.00

JF
I

(b) Jain’s fairness index (JFI)

Fig. 6: (a) Retransmissions experienced by and (b) JFI of two similar but stag-
gered flows (i.e., second one starts 15 s after the first flow) competing for band-
width on a bottleneck link as a function of bottleneck buffer size.

Per Fig. 5, BBR implementations do not converge quickly to an equitable
share when flows do not start at the same time—quite unlike the case of similar
and synchronous flows (§4.1). For instance, when a BBRv3 flow joins 15 s later
at a bottleneck link with a 16×BDP buffer, it takes more than 4 minutes for it to
achieve an equitable bandwidth sharing. Such large buffers are not uncommon in
the internet: Router manufacturers may (by default) provide large buffers [19],
and administrators may configure larger buffers on transcontinental links to cope
with the high RTTs [16] or improve video QoE [46].

We observe that when flow starts are staggered by an interval of 15 s, the
flows experience higher retransmissions (Fig. 6a) than when they are started at
the same time.4 The heatmap in the plot reports, as in §4.1, the percentage of
retransmissions experienced by the two flows; higher values (in yellow and red)
indicate higher retransmissions. BBRv1 in particular suffers high retransmis-
sions in shallow buffer settings, again owing to its aggressive probing behavior
and indifference to losses. A key change in BBRv2 (compared to BBRv1) was the
addition of using loss as a congestion signal; this change enables it to reduce the
loss rates in shallow buffer settings and avoid unnecessary retransmissions [10].
BBRv2 experiences, as a result, the lowest retransmissions of all three implemen-
tations. BBRv3 inherits BBRv2’s changes and, as a consequence, experiences low
retransmissions, which matches Google’s claims about BBRv3 [8]. We observe
that BBRv3 experiences more retransmissions than BBRv2 in shallow buffer
settings, but the former achieves better fairness than the latter across a range of
buffer sizes (Fig. 6b), with the exception of the largest buffer size (of 16-times
BDP). BBRv1, which does not use packet loss to infer congestion, leads to higher
fairness than BBRv2 and BBRv3, both of which take loss into consideration.
These observations could partly be explained by BBRv3’s less aggressive be-

4 As before, we omit the results for 8 times BDP and 16 times BDP as we see virtually
no retransmissions in such settings.
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Fig. 7: When we stagger the arrivals and departures of five flows at a bottleneck
link of 100Mbps and buffer size 32×BDP by 100 s, (a) BBRv1 flows achieve fair
throughput shares faster than (b) BBRv2 and (c) BBRv3.
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Fig. 8: When we stagger the arrivals and departures of five flows at a bottleneck
link of 100Mbps by 100 s, (a) BBRv1 flows achieve better shares of throughput
than (b) BBRv2 and (c) BBRv3.

havior compared to BBRv1 (compare BBRv3’s cwnd_gain and pacing_gain to
those of BBRv1 in Tab. 1).
Takeaways. While BBR’s refinements seem to allow it reduce losses, with recent
versions taking losses into account to control their probing, even the most recent
version of BBR struggles to achieve high fairness when flow arrivals are staggered
by a few seconds. This observation has crucial implications for BBRv3’s adoption
in the Internet, since in the public Internet arrivals of competing flows might
often be staggered with respect to one another.

4.3 Co-existence in deep buffer scenarios

To evaluate how quickly different CCAs converge to fair bandwidth share, we run
a staggered-flow experiment (similar to that of HPCC [35]), where we introduce
five flows, one after another. Again, the flows are similar and we add a new flow
to the testbed every 100 s until we reach five concurrent flows, and then remove
one flow every 100 s until we have only one left. This experiment enables us to
compare and contrast how quickly different CCAs react to dynamic changes in
traffic conditions and converge to the fair share of the bottleneck (100Mbps). In
this evaluation, we specifically focus on deep buffer scenarios to verify Google’s
claim that BBRv3 can equitably share bandwidth in such conditions [8].
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Fig. 9: (a) Cubic offers improved fairness as the number of flows increases, and
(b) when all five flows compete at the bottleneck with a deep (32×BDP) buffer,
BBRv3 has the worst fairness than any other CCA.

Fig. 7 shows the timelines of flows in the staggered-flow experiment in a deep-
buffer (i.e., 32×BDP) scenario for all three BBR versions. Per this figure, BBRv3
struggles to achieve a fair share between the flows; when all five flows compete at
the bottleneck, BBRv3 performs the worst compared to both the previous ver-
sions. BBRv1 flows converge quickly to fair share both when new flows arrive and
old ones leave; its quick convergence to fair share is perhaps largely due to its ag-
gressive probing behavior, which can efficiently discover bandwidth changes. The
average JFI across three runs (Fig. 8) shows that BBRv3 performs better than
BBRv2, but poorer than BBRv1. Cubic, in contrast to BBRv3, performs poorly
with a small numbers of flows, although it improves with increasing number of
flows (Fig. 9a). Unlike Cubic, BBRv3’s performance degrades with increasing
number of flows. If we analyze fairness during the period when all five flows are
competing for bandwidth (Fig. 9b), BBR typically performs poorer than Cubic
on average, exhibiting large variations in performance. Particular in deep-buffer
settings, BBRv3 performs worst compared to both Cubic and earlier versions of
BBR, perhaps because of its less aggressive choice of probing parameters.
Takeaways. While BBRv3’s intra-protocol fairness in deep buffer scenarios is
better than that of BBRv2, its fairness is poorer than that of BBRv1 and seems
to worsen as the number of flows increases (in deep-buffer scenarios). BBRv3
choice of less aggressive probing parameters compared to BBRv1 seems to be the
reason behind the observed behavior.

4.4 Dissimilar flows: RTT fairness

Evaluations concerning fairness of CCAs in prior work (e.g., [50,7]) usually con-
sider flows with similar RTTs. Flows in the Internet typically have different
RTTs, which make it challenging in terms of fairly sharing bandwidth when
such flows interact at a bottleneck link, even if they all use the same CCA. The
RTT dictates a CCA’s reaction to bandwidth limitations or to other flows, since
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Fig. 10: Average throughput difference (TD); 160ms flow starts first, then 15 s
later the (10ms, 20ms, 40ms) flow starts.
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Fig. 11: Average Jain’s fairness index (JFI); 160ms flow starts first, then 15 s
later the (10ms, 20ms, 40ms) flow starts.

the signals typically used by a sender (e.g., packet loss or delay) for determin-
ing how much it can send and/or how fast, must traverse the path from the
bottleneck to the receiver, which then echoes it back to the sender.

With this experiment, we evaluate the bandwidth share when flows using the
same CCA traverse different routing paths, thus experiencing different RTTs,
and sharing a common bottleneck along the way. We run two flows using the
same CCA, where the first flow is our base flow with a fixed RTT of 160ms
and the second flows experiences a different RTT—one of 10, 20, 40, 80 ms, each
constituting a different experiment. In the first experiment scenario, the base
flow, 160ms, starts first and the second flow joins after 15 seconds (Fig. 10,
Fig. 11 and Fig. 12). In the second scenario, the base flow joins 15 seconds after
the flow with the shorter RTT (Fig. 13, Fig. 14 and Fig. 15). These scenarios
help us characterize how the different CCAs behave when the short (or long)
RTT flow joins the network, while the other flow has already reached a steady
state; we can safely assume a flow has finished slow start after 15 seconds.5
Specifically, we calculate the throughput difference between the base flow and
the second flow, as follows: BaseF lowAvgTput −SecondF lowAvgTput. A positive
value implies that the base flow obtains the majority of the bandwidth, while
a negative value indicates that the second flow receives higher bandwidth than

5 We do not disturb a flow while in slow start to ensure that it does not exit slow start
prematurely, which would result in link underutilization.
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Fig. 12: Average throughput difference (TD) and Jain’s fairness index (JFI);
160ms flow starts first, then 15 s later the 80ms flow starts.
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Fig. 13: Average throughput difference (TD); short RTT flow (10ms, 20ms,
40ms) starts first, then 15 s later the 160ms flow starts.

the first. Additionally, we also compute the Jain’s fairness index to quantify the
CCA’s fairness.

When we start the long-RTT flow first, all versions of BBR favor the long-
RTT flow (Fig. 10); it receives much higher bandwidth than the second flow.
This bias towards the long-RTT flow (starting first) diminishes a bit when the
difference in flow RTTs decreases (Fig. 10c); BBRv2 and BBRv3 (which is largely
similar to BBRv2) perform much better than BBRv1 when RTT differences
between the base flow and second flow decreases (Fig. 12), perhaps owing to their
less aggressive design. These observations also hold if we start the short-RTT flow
first and then the long-RTT (or base) flow (Fig. 13 and Fig. 15). Our inferences
are in agreement with prior work that demonstrated BBR favoring long-RTT
flows over short-RTT flows [49,26], which is quite different from what has been
observed in case of AIMD mechanisms [6,25]; our results confirm that BBRv3’s
behavior does not vary substantially from BBRv2 with respect to preferring
long-RTT flows over short-RTT flows. Cubic, unlike BBR, favors the second
(short-RTT) flow over the base (long-RTT) flow, even though the second flow
starts after the base flow, across almost all buffer settings.

All BBR versions exhibit high RTT unfairness when the RTT difference be-
tween the base and second flow is significant, regardless of which flow starts first
(Fig. 11, Fig. 12, Fig. 14, and Fig. 15). Unlike BBR, Cubic achieve high fairness
across all settings, regardless of how we size the bottleneck buffer. BBR’s bias
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Fig. 14: Average Jain’s fairness index (JFI); short RTT flows (10ms, 20ms,
40ms) start first, then 15 s later the 160ms flow starts.
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Fig. 15: Average throughput difference (TD), 80ms flow starts first, then 15 s
later the 160ms flow starts.

towards long-RTT flows is less pronounced in shallow buffers (if the RTTs of the
flows do not differ substantially), where the short-RTT flow is able to compete
for a better bandwidth share with the long-RTT flow.

Fairness is improved for all BBR versions if the short RTT flow starts first,
as it is able to grow its cwnd before the long RTT flow starts. Additionally,
the smaller the gap between the two flow’s RTT values, the better the fairness
as both flows are able to estimate the bottleneck bandwidth and RTT at the
same rate (Fig. 12 and Fig. 15). When BBR flows with different RTTs compete
for bandwidth, the short-RTT flow is likely to observe the increase in queuing
faster than the long-RTT flow (since the rate at which a sender can observe such
signals depend on the RTT). Furthermore, since BBR determines the delivery
rate based on such signals, the short-RTT flow may consistently slow down in
response to any observed queuing before the long-RTT flow reacts. When flows
eventually synchronize, short-RTT flows regain some of the bandwidth share,
but the situation reverts to benefitting the long-RTT flow again as they probe
for bandwidth.

Takeaways. BBR’s bias towards long-RTT flows is well-known, and our eval-
uations confirm that BBRv3 improvements or optimizations do not change the
status quo. BBR offers poor fairness across flows that differ substantially in
RTT, which might be typical in the Internet. Cubic, the widely used CCA in the
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Fig. 16: Throughput of a BBR flow when competing for bandwidth with a Cubic
flow on a bottleneck link with a 1×BDP buffer.
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Fig. 17: Jain’s fairness index (JFI) of two flows using different CCAs and com-
peting on a bottleneck with a 1×BDPbuffer.

Internet, unlike BBR, offers higher fairness than BBR in nearly all our evalua-
tions scenarios with flows with different RTTs.

4.5 Dissimilar flows: Inter-CCA fairness

We now evaluate BBRv3’s ability to share bandwidth equitably when compet-
ing with flows using CCAs other than BBRv3. With more than 40% of current
Internet traffic estimated to be delivered using BBR [36], it is quite important
to characterize how BBRv3 behaves when competing with non-BBRv3 flows al-
ready prevalent in the Internet. Such an inter-CCA characterization is also timely
and crucial for network operators and generally the networking community, since
Google intends to submit BBRv3 soon for inclusion in the Linux kernel [8]. To
characterize BBRv3 flows’ ability to co-exist with non-BBRv3 flows, we run two
(co-existing) long-lived flows, each using a different CCA; we start these flows
at the same time. We set the RTT to 100ms and the bandwidth to 100Mbps,
and we vary the bottleneck buffer size as a function of BDP.

BBRv1 has long been reported to be extremely unfair to loss-based CCAs
such as Cubic [50,7,49,26]. Fig. 16a, hence, simply confirms this well-established
claim. BBRv2 seems to fare well than BBRv1 (Fig. 16b), since unlike the former,
the latter takes packet loss into consideration. BBRv2 improves upon BBRv1
with respect to its ability to share bandwidth with loss-based CCAs, even al-
lowing Cubic to obtain more than its share of fair bandwidth when competing
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Fig. 18: Retransmissions when (a) a BBRv3 flow and (b) a Cubic flow compete
against flows using other CCAs.

with BBRv2 flows. BBRv3, which Google claims will quickly converge to fair
share, performs even slightly worse than BBRv1 (Fig. 16c). Even if flows expe-
rience same RTTs, BBRv3, in its current form, offers no room for Cubic flows
to co-exist; any RTT differences between the flows may only exacerbate this
situation.

Fig. 17 shows the Jain’s fairness index for the competing flows to characterize
BBR’s inter-CCA fairness. In shallow-buffer scenarios, BBRv1 is quite unfair to
all others. No other CCA, not even other versions of BBR, is able to obtain a fair
share when competing with BBRv1 (Fig. 17a); increasing bottleneck buffer sizes,
nevertheless, seems to alleviate this situation substantially. This behavior is pre-
sumably due to BBRv1 only backing off when its large in-flight data cap (3×BDP)
is exceeded (refer Tab. 1), ignoring packet loss unlike BBRv2 and BBRv3. Unlike
BBRv1, BBRv2 performs quite well (with high JFI values) across all bottleneck
buffer settings (Fig. 17b) primarily because of its ability to reach to packet loss.
It can equitably share bandwidth with Cubic, making it safer than BBRv1 for
deployment in the public Internet where the latter is quite prevalent. BBRv3,
despite being only a minor revision of BBRv2, performs quite poorly, especially
against Cubic (Fig.17c). In deep-buffer settings, Cubic is able to send more data
into the network before experiencing congestion (i.e., packet loss); naturally, it
obtains a higher bandwidth compared to shallow-buffer settings and, as a result,
the fairness index improves.

Overall, while the design of BBRv3 (which it inherits from BBRv2) rep-
resents a substantial progress (in creating a fair and safe CCA), the perfor-
mance tweaks [8] or optimizations (refer Tab. 1) that Google has introduced in
BBRv3 are exactly the opposite. With regards to Google’s claims about reduced
packet loss, we observe frequent retransmissions (Fig. 18) when BBRv3 com-
petes against Cubic, comparable almost to those when BBRv1 competes against
Cubic in both deep and shallow-buffer settings.

Thus far we focused on a scenario where a single BBR flow competes with a
single Cubic flow for bandwidth on a bottleneck. Previous studies showed that
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Fig. 19: JFI when 1-5 Cubic flows compete against 1-5 (a) BBRv1, (b) BBRv2
and (c) BBRv3 flows.

even when competing with several Reno or Cubic flows a single BBRv1 flow
was able to grab most of the link bandwidth [40,50]. We revisit this evaluation
where we pit a single BBR flow against several Cubic flows. More specifically,
we conduct a series of experiments where we vary the number of BBR flows as
well as competing Cubic flows from 1 through 5, and characterize the fairness
(measured via JFI) across the competing flows in each experiment (Fig. 19).
As before, we set the link bandwidth to 100Mbps, the RTT to 100 ms, and the
buffer size to 1×BDP(i.e., 1250KB). We start all the flows at the same time and
run them for 360 s. Fig. 19 shows the JFI of the experiments with the three
BBR versions competing against Cubic. The top value in each cell is the mean
JFI value over time, concatenated over three experiment runs, while the bottom
value show the mean throughput shares of BBR and Cubic.

In Fig. 19a, JFI values become smaller (i.e., fairness worsens) as we move
from top to bottom or right to left. This observation confirms the observations
from prior work that even a single BBRv1 flow can outcompete multiple Cubic
flows [40,50]. BBRv2’s design completely reverses this behavior (Fig. 19b); when
we increase the number of Cubic flows fairness improves, emphasizing once again
that we can safely deploy BBRv2 in the public Internet. BBRv3, in contrast,
resurrects BBRv1’s aggressive behavior (Fig. 19c); it offers lower fairness than
BBRv2, although the Cubic flows seem to be able to obtain a higher bandwidth
when competing against BBRv3 than when competing against BBRv1.
Takeaways. While BBRv2 makes significant improvements towards achieving
equitable bandwidth sharing when competing against loss-based CCAs, BBRv3
seems to undo most, if not all, such improvements. BBRv3 does not equitably
share bandwidth with loss-based CCAs such as Cubic, and its behavior in some
instances is even worse than that of BBRv1. Despite its ability to react to packet
loss, it remains highly unfair to Cubic flows, in shallow buffers.

4.6 Dissimilar flows: Real-world workloads

Until now, we used a small, fixed number of (long-lived) flows in our evalua-
tions. Now, we turn to using realistic traffic workloads to quantify BBR’s per-
formance in real-world network conditions. Specifically, we use a distribution
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Fig. 20: (a) Distribution of flow sizes in the MAWI trace; Flow completion times
(FCTs) and FCT “slowdown” for various flow sizes across different CCAs.

of flows comprising both short-lived (i.e., mouse) and long-lived (i.e., elephant)
flows. We sample the size of these flows from an empirical distribution of flow
sizes observed in the Internet (Fig. 20a). The CDF in Fig. 20a depicts the flow
size distribution from a MAWI trace (refer §3). We use the Harpoon [44] traffic
generator to sample the flow sizes and connection times from this trace data. We
fixed the random seed used in the sampling to ensure that the sampled distri-
bution of flow sizes remains the same across the evaluations of all CCAs; we can
then compare the performance of the same set of flows across different CCAs
and determine which CCA performs the best. We conduct two distinct experi-
ments using the topology shown in Fig. 2 with the bottleneck bandwidth set to
100Mbps, RTT to 100ms, and the buffer size to BDP. In the first, we set all flows
to use the same CCA, and in the second, we configure half of the flows to use
one of the BBR versions and the other half to use Cubic. We then analyze the
flow completion times (FCTs) as well as the FCT “slowdowns” [53] computed by
normalizing the measured FCT by the theoretically optimal FCT obtained by
taking into account the flow size, the bandwidth, and the RTT.

When all flows use the same CCA. In case of BBRv1, the FCTs of short flows,
i.e., flows smaller than 300KB, are comparatively longer than those of the long
flows (Fig. 20b). The FCT slowdowns for the longest flows in Fig. 20c when
compared to those of the smaller flows clearly show that BBRv1 prioritizes long
flows over their shorter counterparts. BBRv2, in contrast, offers lower FCT for
short flows than for long flows. Lastly, BBRv3 offers smaller FCT slowdowns for
short flows than for long flows, but its FCT slowdowns are consistently higher
than those of BBRv2.

When flows are split equally between two CCAs. To evaluate how BBR behaves
when competing with Cubic (similar to the earlier evaluations in §4.5) in realistic
traffic conditions, we configure half of the flows in the workload to use one of the
BBR versions and the other half to use Cubic. As before, we plot the FCTs and
FCT slowdowns of the flows grouped into buckets of different sizes in Fig. 21. The
FCTs and FCT slowdown values corresponding to the experiment where BBRv1
flows compete with Cubic (Fig. 21a and Fig. 21d) are not surprising; BBRv1
is quite unfair to Cubic, as amply demonstrated in §4.5, and its ability to seize
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Fig. 21: Flow completion times (FCTs) and FCT “slowdowns” for flows of varying
sizes split between two CCAs.

bandwidth aggressively from Cubic flows result overall in substantially smaller
FCTs and FCT slowdowns for BBRv1 flows than Cubic flows, regardless of flow
size. BBRv2 is far less aggressive to Cubic than BBRv1 (Fig. 21b and Fig. 21e).
Short flows of both CCAs experience similar FCT slowdowns, while long flows
using BBRv2 fare better than those using Cubic. BBRv3’s performance is similar
to that of BBRv2, except in case of long flows. (Fig. 21c and Fig. 21f) Long
flows using Cubic experience higher FCTs and FCT slowdowns when competing
against BBRv3 than against BBRv1.
Takeaways. The evaluations confirm the highly aggressive and unfair behavior
of BBRv1 towards loss-based CCAs such as Cubic. BBRv2’s design significantly
improves that status quo, making Cubic flows achieve nearly their fair share
when competing with BBRv2 flows. While BBRv3 behaves similar to BBRv2 for
short flows allowing both Cubic and BBRv3 flows to experience similar FCT
slowdowns, long flows using BBRv3 experience much smaller FCT slowdowns
than those using Cubic.

5 Related Work

There is an extensive body of prior work on congestion control in the Internet.
Google’s BBR is a relatively new addition and its design intelligently combines
several good ideas from the literature. Several independent studies have exam-
ined BBR’s performance in various scenarios and compared it with that of other
CCAs, partly perhaps because of how quickly Google has been transitioning large
volumes of traffic to use BBR [8]. Below, we briefly review these prior work.

Many prior work such as [50,49,7,42,26] conducted comprehensive evalua-
tions of BBRv1, focusing on its interactions with other well-known and widely
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used CCAs, e.g., NewReno, Cubic, and Vegas. Past evaluations of BBRv1 con-
sidered both similar and dissimilar flows (i.e., flows with varying RTTs or using
different CCAs). Some investigated BBRv1’s performance in both shallow and
deep buffer scenarios [50,26,7], and some others analyzed the impact of extremely
long delays, which are typical in satellite networks [18]. Prior studies identified
several shortcomings with BBRv1, including unfairness to loss-based CCAs in
shallow buffers, frequent retransmissions, high RTT unfairness as well as high
queue occupancy. The scope of virtually all such evaluations was, however, lim-
ited to long-lived flows. Hurtig et al. tested BBRv1 with various buffer sizes and
link bandwidths and used a workload comprising a mix of bulk as well as short
transfers [27], but they used fixed sizes (instead of sampling them from observed
traffic distributions) for long-lived and short-lived flows.

Active queue management (AQM) techniques are designed for mitigating
congestion [3], and several prior work have studied the impact of deploying AQMs
on the performance of different CCAs (e.g., [24]). In the case of BBR, studies
have shown that AQMs such as FQ-CoDel improve the performance of both
BBRv1 and BBRv2 in deep buffer scenarios [55,21,33]. We consider the analyses
of AQM deployments on BBRv3 as orthogonal to this work.

BBRv2 uses ECN signals to detect queuing, and Tahiliani et al. [48] showed
that BBRv2 reduces queue occupancy at the bottleneck, when ECN was en-
abled. Multiple studies demonstrated that BBRv2 has lower link utilization than
BBRv1 owing to its conservative behavior during bandwidth probing and that
both versions were unfair to loss-based CCAs in deep buffer scenarios [37,30,45,52].
We did not evaluate the benefits of ECN for BBRv3 in this study, but we leave
that for future work.

Some recent work also attempted to address the BBR’s shortcomings. Bi et
al. [5], for instance, focused on BBRv1’s frequent retransmissions issue. They
proposed dynamically adjusting the in-flight data cap based on the estimate
bottleneck buffer size from RTT samples as well as packet losses. BBRv2+ used
path delay information for tuning the aggressiveness of bandwidth probing [52].
They used Mahimahi [39] for evaluating BBRv2+ in emulated WiFi and LTE
networks. While we do not propose solutions for addressing the shortcomings in
BBRv3, we hope our comprehensive evaluations and detailed analyses will pave
the way for designing and validating different solutions.

6 Concluding Remarks

The bottleneck bandwidth and round-trip propagation time (BBR) algorithm
is a relatively new congestion control algorithm (CCA). BBR’s design eschews
the typical congestion signals (e.g., transient queue delays and losses) used in
the vast majority of prior work. It measures instead bottleneck bandwidth and
round-trip times on each ACK and paces the sender to retain the delivery rate
close to the bottleneck bandwidth and avoid any queue build up. Several studies,
however, demonstrated this initial design to be highly unfair to loss-based CCAs
such as Cubic. Google responded to the criticisms by evolving the design and
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releasing newer versions of BBR. BBRv3, released in July 2023, is the most
recent version in the evolution of BBR.

Given the increasing volume of traffic that Google has been transitioning to
use BBR and its current efforts to include BBRv3 in the Linux kernel, we turned
our attention to performing a systematic and rigorous evaluation of BBRv3
in a range of realistic network conditions and traffic scenarios. Specifically, we
checked whether Google’s claims of BBRv3’s fairness towards other CCAs hold
water in our evaluations. While BBRv3 has evolved substantially compared to
the earlier versions, in our evaluations BBRv3 struggles to achieve an equitable
bandwidth sharing with competing flows. Even when competing with similar
flows (i.e., flows using BBRv3) a small difference in arrival times causes BBRv3
to incur substantial delays in bandwidth convergence. Despite the revisions,
optimizations, and bug fixes, BBRv3’s highly competitive behavior stifles Cubic
on a bottleneck link, particularly in shallow buffer settings. These results have
crucial implications for BBRv3’s adoption and deployment in the public Internet.
We release our testbed configuration and scripts for running and analyzing the
experiments as open source artifacts [54], and we hope our efforts encourage the
community to think about an objective template or framework for evaluating
modern CCAs.
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