Reducing Latency Through Page-aware Management of
Web Objects by Content Delivery Networks

Shankaranarayanan
Puzhavakath Narayanan
Purdue University
spuzhava@purdue.edu

Balakrishnan
Chandrasekaran
Duke University

balac@cs.duke.edu

ABSTRACT

As popular web sites turn to content delivery networks
(CDNs) for full-site delivery, there is an opportunity to im-
prove the end-user experience by optimizing the delivery of
entire web pages, rather than just individual objects. In par-
ticular, this paper explores page-structure-aware strategies
for placing objects in CDN cache hierarchies. The key idea is
that the objects in a web page that have the largest impact
on page latency should be served out of the closest or fastest
caches in the hierarchy. We present schemes for identifying
these objects and develop mechanisms to ensure that they
are served with higher priority by the CDN, while balancing
traditional CDN concerns such as optimizing the delivery of
popular objects and minimizing bandwidth costs. To estab-
lish a baseline for evaluating improvements in page laten-
cies, we collect and analyze publicly visible HT'TP headers
that reveal the distribution of objects among the various
levels of a major CDN’s cache hierarchy. Through exten-
sive experiments on 83 real-world web pages, we show that
latency reductions of over 100 ms can be obtained for 30%
of the popular pages, with even larger reductions for the
less popular pages. Using anonymized server logs provided
by the CDN, we show the feasibility of reducing capacity
and staleness misses of critical objects by 60% with minimal
increase in overall miss rates, and bandwidth overheads of
under 0.02%.

1 Introduction

Reducing the latency of web pages is critical for electronic
commerce as it directly impacts user engagement and rev-
enue [16,18,21]. Amazon, e.g., found that 100ms of latency
costs 1% in sales [21], while Google Search found that a 400
millisecond delay resulted in a 0.59% reduction in searches
per user [31].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

SIGMETRICS 16, June 14-18, 2016, Antibes Juan-Les-Pins, France
© 2016 ACM. ISBN 978-1-4503-4266-7/16/06. .. $15.00
DOL: http://dx.doi.org/10.1145/2896377.2901472

Yun Seong Nam
Purdue University
nam21@purdue.edu

Bruce Maggs
Duke University & Akamai
Technologies

bmm@cs.duke.edu

89

Ashiwan Sivakumar
_ Purdue University
asivakum@purdue.edu

Sanjay Rao
Purdue University
sanjay@purdue.edu

The quest to reduce web-page latencies has triggered much
effort in the networking community among both researchers
and practitioners. On the one hand, we have seen the large-
scale adoption of widely distributed Content Delivery Net-
works (CDNs), that involve placing caches at thousands of
Internet vantage points, close to end users. On the other
hand, we have seen the recent emergence of new protocols
such as SPDY [19] that significantly influenced the HTTP
2.0 standard. Despite these efforts, web-page latencies re-
main significant, constituting 80-90% of overall application
response time by some reports [20, 31].

A key challenge in reducing the latencies of web-pages (the
time to get an acceptable initial rendering of the page, for-
mally defined in §3.1) is their complexity [10,22]. Web pages
are comprised of tens to hundreds of static and dynamic ob-
jects such as images, style-sheets (CSS), and JavaScript (JS)
files, which may be served from multiple domains. Web-page
download process has complex dependencies [27,36], where
some objects may have more impact on web-page latencies
than others. The first objects fetched during a download
(e.g., HTML, CSS, and JS) may need to be parsed or exe-
cuted to decide which objects to fetch subsequently. Objects
needed for an initial rendering of the page (e.g., to trigger a
browser load event) may be more critical to the user expe-
rience than those that refine the initial rendering.

The need to accommodate the varying impact of individ-
ual objects on overall latencies has begun to receive atten-
tion from the community [12,19]. Specifically, SPDY allows
servers to transmit objects out of order to reflect their pri-
ority in the page load process. While useful in single server
settings, most web pages today are served from multiple do-
mains, and make extensive use of CDNs. Simply enabling
SPDY between clients and CDN servers addresses only part
of the problem. It is also necessary to reduce the CDN re-
trieval time of critical objects, especially since CDNs are
typically organized as a hierarchy of caches [14] with differ-
ent capacities and latencies at each layer.

Our motivation arises in part from the results of a study
we conducted in which we collected end-to-end measure-
ments of clients downloading pages from a number of web
sites. The data shows that (i) objects appearing on the
same web page are often served from multiple layers of the
CDN cache hierarchy; (ii) critical objects are not always
served from the fastest caches; and (iii) delays in serving a

small number of critical objects can disproportionately im-
pact overall latency.

Motivated by these findings, we present a framework that
allows CDNs to map objects more important for page laten-
cies to faster cache layers. Our framework is enabled by the
increasing shift of popular web-sites to CDNs for full-site
delivery (e.g., for 89% of the pages in our study above, the
main HTML document was served by the CDN). We con-
sider a family of schemes for determining object priorities
including a strategy based on content type, a strategy that
prioritizes objects needed for an initial rendering of the page,
and a scheme that explicitly takes the dependencies across
objects of the page into account. We show how CDN cache
placement and replacement algorithms may be redesigned
to take object priorities into account, while still consider-
ing object popularity. We consider an approach where, to
keep bandwidth overheads small, only objects most critical
for latency are proactively refreshed to avoid staleness re-
lated misses. We present a family of schemes for proactive
refreshing that differ in terms of which objects are refreshed.

We present an extensive evaluation study of our schemes
using a combination of controlled experiments that emulate
real web pages in hierarchical CDN settings, as well as trace
data from a real CDN deployment. Our evaluations seek
to understand the benefits of prioritization in CDN place-
ment and refresh schemes, the relative benefits of different
schemes for prioritization, and the sensitivity of our results
to page popularity and composition.

Our evaluations with 83 real-world pages show that 30% of
the most popular pages and 59% of the other pages show la-
tency reduction larger than 100ms, with some pages showing
latency reductions as high as 500ms. Both placement and
proactive refreshing are important in achieving the bene-
fits. For the vast majority of pages, considering content
type in both placement and proactive refreshing provides
most of the benefit. However, the additional benefits with
other prioritization schemes can be significant in lower hit
rate regimes, and when the penalty of going to the origin is
higher. Finally, using trace driven simulations, we show the
feasibility of the priority-based caching approach for reduc-
ing miss rates of page-critical objects in CDNs by 60% with
minimal increase in overall miss rates. We also highlight the
opportunity of minimizing stale misses for objects critical
for latency by as much as 60% while incurring additional
bandwidth costs of less than 0.02%.

2 DMotivating measurement study

Web pages consist of tens to hundreds of objects of mul-
tiple content types (HTML, CSS, JS, images). A typical
page load process involves significant dependencies across
objects [27,36]. An initially downloaded HTML, CSS or JS
(henceforth referred to as HCJ) object (which often embeds
pointers to other objects) must be parsed (and executed) to
identify further objects to download. Browser policies may
dictate dependencies — e.g., execution of a JS must wait for
a prior CSS to complete execution. Figure 1 shows an ex-
ample dependency graph obtained using wprof [36]. Clearly,
not all objects have the same impact on page latencies — e.g.,
C'1 is much more important than W1. Further, content type
need not necessarily reflect object importance — e.g., some
HCJ objects may not be required for an initial rendering of
a page most important for user experience, while Non-HCJ
objects such as images may in fact be required. Moreover,

90

-— .
i_ ' Execution

) Download

Key:
H
C Css
J Javascript _
S SVG - -
PG| JPEG @ @ Cuan
w Woff
Figure 1: Dependency graph for a single load of www.apple.com.

Each node shows download or execution of an object, and the
directed arrow shows the dependency between them.

other objects may be dependent on Non- HCJ objects — e.g.,
a JS execution may wait on the arrival of a sprited image.

CDNs consist of a hierarchy of caches [14], typically con-
sisting of clusters of servers deployed in multiple edge loca-
tions, and in parent locations. A user request that arrives
at a server in an edge cluster (First server) could “hit” ei-
ther at the memory or disk layer of that server. On a cache
miss at the First server, requests could be directed to other
servers in the CDN hierarchy (Second server), which could
be a peer server in the same cluster or a server in a parent
cluster. The latency of CDN served objects may vary widely
depending on whether the object hits at the CDN and the
layer that serves it.

To understand opportunities for reducing page latencies
with CDNs by better mapping more important objects to
faster CDN caches, we analyzed a prominent CDN that ex-
tensively provides edge caching (which we refer to as CDN).
In the rest of this section, we discuss our measurement ap-
proach, and our findings.

2.1 Measurement methodology

We conduct end-to-end experiments by downloading real
web pages from web clients and for each page measure the
fraction of objects served from the different CDN layers. To
determine the layer in the CDN hierarchy from which an
object is served, we leverage HTTP pragma headers sup-
ported by CDNs for debugging purposes. Specifically, CDN
supports the following pragma headers — CDN-x-cache-on,
CDN-x-remote-cache-on and CDN-x-get-request-id. We set
these pragma headers on all HT'TP requests issued from the
client. If the object is served by CDN, then the first con-
tacted CDN server appends an X-Cache header in the HTTP
response, and if a second CDN server is involved it appends
an X-Cache-Remote header. The response also contains an
X-CDN-Request-ID header with a dot-separated list of re-
quest IDs appended by each of the contacted CDN servers.

The X-Cache and X-Cache-Remote response headers con-
tain values such as TCP MEM HIT, TCP HIT, TCP MISS,
TCP REFRESH MISS, which respectively indicate a hit in
the memory of that server, a disk hit, a server miss and a
TTL expiry of a cached object with a new version fetched
from the origin. We also count the number of request IDs
in the X-CDN-Request-ID header to obtain the total num-
ber of CDN servers contacted. We use the values in these
three headers to determine the layer from which the object
was served. For instance, a TCP MEM HIT in the X-Cache
header with one ID in the X-CDN-Request-ID header im-

100% - m At least two servers (or origin)
r DO Second server

80% OFirst server (disk)
(| -

60% -

2:; :D ‘j |HH Nalko HiH; ol

Alexa Top 1K Web Pages (ordered by rank)

page

% of cacheable CDN objects in

Figure 2: Breakdown of the different caching layers from which
CDN-served objects of a web page are received. Fractions not
shown hit at the memory layer of the first server

plies the object was served from the memory of the first
CDN server. Like-wise a TCP MISS in the X-Cache header
with a TCP MEM HIT in the X-Cache-Remote with two
IDs implies the object was served from the second CDN
server, while a MISS in both the headers means the object
was fetched from origin. Note that, if we see a TCP MISS
in both the headers with more than two IDs, due to limita-
tions of the pragma headers, it is not possible to precisely
tell if the object was served from the origin or another CDN
server. But in our real runs we find these cases to be in-
significant. For 90% of the pages fewer than 6 requests had
more than two IDs in the X-CDN-Request-ID header.

We chose 100 Web pages for our measurement study across
a wide range of popularity (Alexa US top sites [7]). Our
measurement set has 40 pages in the Alexa rank top 1-
1000 and 60 pages beyond rank 1000 which we refer to as
Top1K and Beyond1K respectively in the rest of the paper.
These pages were selected based on whether they had a good
fraction of their objects served from CDN. Across all pages,
at least 38% of the objects were served from CDN and for
25% of the pages more than 68% of the objects were served
from CDN. Further, at least 92% of CDN served objects
were cacheable for 90% of the pages. We also find that the
main HTML for 89% of these pages were served from CDN.

Back-to-back downloads of the same page may artificially
inflate the hit rates in subsequent runs owing to objects
cached by the CDN from the earlier runs. To ensure our
measurements themselves do not impact the hit rates, our
entire set of measurements were spaced out across several
weeks with consecutive downloads of the same page sepa-
rated by 3 days — an analysis of the TTLs of objects in the
pages indicated most objects would expire by this time.

2.2 Key findings

We now present key observations from our study.

e Objects of a Web page may be served from different CDN
caching layers incurring very different latencies: Figure 2
presents the fraction of cacheable CDN objects served from
each layer in the CDN hierarchy for a given run of the Alexa
ToplK websites. Each stacked bar corresponds to a web
page, and the segments in the bar show the breakdown —e.g.,
for the second most popular page (second stacked bar from
the left), going from top to bottom, 19% of the cacheable
CDN objects are served from the disk of the first server, 5%
from the second server, 10% from at least 2 CDN servers (or
origin) and the rest (66% — not shown) are served from the
memory of the first server.

91

1.0
» 8
2038
2
i)
)
5 0.6
o
=}
©
uﬁi 0.4 First Server (mem)
~ First Server (disk)
[T
Q2 Second Server

At least two servers (or origin)

10° 10! 102)

10° 10
Time To First Byte(TTFB) in ms

Figure 3: TTFB of objects served at different CDN layers

Top1K-Day1
‘‘‘‘‘‘ Top1K-Day2
== Topi1K-Day3
== BeyondiK-Day1
== BeyondiK-Day2
Beyond1K-Day3

0 20 40 60 80
% objects beyond first CDN server

100

Figure 4: Fraction of cacheable CDN objects that are served from
beyond the first CDN server across pages of two popularity classes
for 3 different days

Figure 3 shows a distribution of the Time To First Byte
(TTFB) of objects across all pages categorized by the layer
from which it was served. The TTFB for an object is the
time elapsed from when the request was sent from the client
until the first byte of the response was received at the client,
including the network time and retrieval time at the cache
(or server). As expected, the TTFB observed across the
different CDN layers vary substantially.

Figure 4 shows the fraction of cacheable CDN objects that
are served from beyond the first contacted CDN server for
the ToplK and Beyond1K classes for three different days.
The figure shows that a significant fraction of objects are
served from beyond the first CDN server even for the ToplK
pages — e.g., the 50th(90th) %ile of objects served from be-
yond the first server were more than 11%(34%). Further, for
the Beyond1K pages more objects are served from the far-
ther layers in the CDN hierarchy — e.g., the 50th(90th) %ile
of objects served from beyond the first server were more than
37%(74%). Moreover across multiple days, the hit rates re-
main similar for both the classes indicating the trends are
consistent across many days and the hit rates are represen-
tative of the page popularity. We performed similar anal-
ysis across multiple days from different geographical loca-
tions and we find the trends to be similar. For instance, the
median percentage of objects served from beyond the first
server across the ToplK pages from another US location for
three days were 15%, 12% and 10%, while for the Beyond1K
pages they were 31%, 24% and 32%, with the 90%ile being
higher than 38% and 71% across the days for the ToplK
and Beyond1K respectively.

e C'ritical objects are not always served from the fastest CDN
layers: Figure 5 shows a stacked bar graph with the number
of objects served from each level in the dependency graph (as
described earlier in this section) of www.weather.com. Each

@

=N N
(O IS |

Other CDN(s)

First server (mem)

First server (disk)

Second server

Atleast two servers (or origin)

—
O N O

Number of cacheable objects
N —_

Level in dependency graph
Figure 5: Number of objects from different caching layer at each
level of the dependency graph for www.weather.com

100% O First server (disk)

O Second server

80% - m At least two servers (or origin)

60% A

jects in page

ob)

% of cacheable CDN HCJ

~ il bbllig

20% Hﬂ
Alexa Top 1K Web Pages (ordered by rank)
Figure 6: Breakdown of the different caching layers from which
CDN-served HCJ objects (HTML, CSS, JS) are received.

Critical JS1 MISS L

| ~blocked Critical JS2 MISS
wait |
receive wew—""))))) | |
500 600 700 800 900 10001100120013001400150016001700
Time in msec

Figure 7: Serving delays in HCJ objects disproportionately im-
pacts latency

bar corresponds to a level in the graph and the stacks in the
bar show the number of objects served from the correspond-
ing CDN layer. The figure shows that many critical objects
(generally the internal nodes of the dependency graph) are
served from beyond the first server indicating the potential
to reduce page latencies by considering object priorities in
CDN mechanisms.

Figure 6 shows a breakdown of the CDN layers from which
the HCJ objects are served for the Alexa ToplK pages.
While HCJ objects do not exactly correspond with objects
important for a page load, we consider them here for sim-
plicity. Note that a significant fraction of the CDN served
cacheable objects are HCJ objects — e.g., 42% of CDN served
cacheable objects are HCJ for 50% of the pages. The fig-
ure shows that in general across all pages a significant frac-
tion of HCJ objects are served from different layers of the
CDN hierarchy incurring vastly different latencies — e.g., for
50% of the Top1K pages more than 10% of the CDN served
cacheable HCJ objects are served from higher layers with
this fraction being greater than 48% for 10% of the pages.
e Delays in serving a few critical objects can disproportion-
ately impact page latency: Figure 7 shows a section of the
waterfall diagram which depicts how the objects arrive at
a client during the download of an actual web page. The
X-Axis is the time since the start of the download (only the

92

relevant time segment is shown). Each bar corresponds to
an object, and extends from when a request to that object
was made, to when the object was fully downloaded at the
client. Further, each bar shows the breakdown of the time
spent waiting for a connection to the server (blocked), time
spent waiting for the first byte of the response (wait) and
time spent in receiving the object (receive). From the fig-
ure, we see that many objects were delayed because they de-
pended on two JS objects, which got delayed (267ms, 135ms
respectively with the time dominated by wait time). Fur-
ther investigation showed both JS objects were cacheable
and served from CDN, but were served beyond the first two
servers in the hierarchy. Interestingly, many of the depen-
dent objects hit in the CDN. Avoiding delays of these two
JS objects would potentially reduce page load times by over
400ms (a 19% reduction).

e Both true misses and stale misses contribute to objects be-
ing served from beyond the first CDN server: We conducted
a deeper analysis on the causes for the first CDN server
misses. We found that even though true misses contribute
greatly to the first server misses, we also find significant frac-
tions of staleness related misses — e.g., the fraction of first
server misses that were staleness related misses is more than
29% and 45% at the median and 75%ile respectively, with
the rest being true misses.

3 Enabling page-awareness in CDNs

In §2, we have shown that there is opportunity to reduc-
ing web-page latency by mapping objects in a page most
critical for latency to the fastest caches in the CDN hierar-
chy. In this section, we revisit CDN design to exploit this
opportunity. In doing so, a number of issues must be tack-
led including (i) determining which objects to prioritize; (ii)
reconciling the need to prioritize objects more critical for la-
tency with the traditional CDN goals of placing more popu-
lar objects at the edge to save bandwidth, by appropriately
tailoring cache placement and replacement policies; and (iii)
avoiding staleness misses for important objects in addition
to capacity misses. We discuss our schemes for each of these
issues in the following sections.

3.1 Schemes for prioritization

We consider a range of schemes for assigning priorities to
objects, which involve different trade-offs between the com-
plexity of the priority-marking scheme, and the potential
latency benefits as we discuss below:

e Prioritizing objects based on content type: (Type)
Our first scheme is content-type based priority assignment,
where objects are accorded priorities based on content type
— specifically, HTML objects receive higher priority, followed
by JS and CSS, and finally images and others. This, in fact,
conforms to the best-practices for prioritization with the
SPDY protocol, and is implemented by Chrome today [4].
e Prioritizing objects needed for initial page render-
ing (OLType): Content type may not accurately reflect the
importance of an object to page latency. Objects needed for
an initial acceptable rendering of a page are more critical to
user experience than other objects. While images may be
important for such an initial rendering, some HCJ objects
may not be required. A commonly used indicator to iden-
tify such an initial version of the page is an Onload event
triggered by the browser. The time to generate a browser
Onload event, which we refer to as Onload Time (OLT),

is a commonly used metric to measure web page load per-
formance [30]. This motivates our OLType strategy which
prioritizes objects prior to the Onload event, and among
such objects, prioritizes objects based on content type. More
generically, this strategy could be refined to consider other
indicators of an initial page load such as ”above the fold”
content, content related to most critical visual progress [2],
or content with the highest utility to users [11].

e Prioritization based on page dependency graph
(OLDep): While Type and OLType are fairly coarse-grained
strategies, a more fine grained prioritization scheme is to
consider the actual dependency graph associated with the
page, and assign prioritizes based on the graph — e.g., in
Figure 1, J1 would be accorded higher priority than J4.
This motivates the OLDep algorithm. Like OLType, OLDep
prioritizes objects needed to trigger the Onload event over
other objects. However, among objects needed for the On-
load event, it prioritizes objects based on their depth in the
dependency graph, with HCJ objects preferred among those
at the same depth. Likewise, objects after the Onload event
are also prioritized based first on their depth in the depen-
dency graph, and then their content-type.

3.2 Balancing popularity and priority in cache
placement and replacement

CDNs have two potentially conflicting goals that they must
consider in deciding whether to cache objects at a given edge
location: (i) cost savings; and (ii) minimizing user latency.
For cost savings, it is desirable to cache the most popular
objects at the edge. However, for user latency savings, it is
desirable to cache high priority objects at the edge. Since
more popular objects might not be the highest priority and
vice versa (e.g., page logos vs product related images), it is
important to carefully reconcile these considerations.

A naive approach to tackling these issues is to use multiple
LRU queues with one queue per priority level. When an
eviction is required, incoming objects evict the least recently
used objects in lower priority queues, before evicting the
least recently used objects in the queue having the same
priority as the incoming object. A key limitation of this
approach is that objects with higher priority tend to remain
in the cache even if they are no longer accessed, creating
cache starvation for the popular, but low priority objects.

Instead, our approach is inspired by the notable Greedy-
Dual-Size algorithm [13] which considers how to balance lo-
cality of access patterns with object size and the variable
costs associated with fetching objects. We adapt this algo-
rithm to balance object priority and popularity by assigning
a utility to each object based on its priority (F;), and im-
plement our cache as a priority queue ordered by the util-
ity of the objects. When an eviction is required, objects
with the lowest utility value (which are located at the tail
of the queue) are evicted first. To prevent high priority ob-
jects from residing permanently at the head of the queue, we
gradually decrement the utility value of the objects in the
queue that are no longer accessed. This may be achieved in
a computationally efficient manner by maintaining a mono-
tonically increasing global clock for the cache, which is added
to the utility value of the object (U(z)) as follows:

U(i) = clock + 1+ (R —1) % =2 — ¢

1

Here, Pyin is the lowest assignable priority and is higher
than P,.z, the highest assignable priority. For simplicity,

93

we fix Pmae = 1 in our formulation and hence P; varies be-
tween 1 and Py,in. The parameter R is the ratio of the lowest
and highest assignable priorities (Pmin/Pmaz). A linear in-
terpolation is used to assign the initial utility to objects with
any priority. R is a knob that the CDN could tune to decide
how much to favor hits to higher priority objects over lower
priority objects, and we evaluate the impact of R with real
traces in §6.1. The utility value of the object is updated
using the above equation when the object is accessed from
the cache. The monotonicity of the clock is maintained by
incrementing the clock on an eviction to the utility value
of the evicted object. Therefore, objects that are accessed
more frequently will have a higher utility value than objects
in the cache that do not see any further accesses. This en-
sures that high priority objects that are no longer accessed,
eventually get evicted from the cache. Finally, note that
an item is placed in the cache only if its utility exceeds the
utility of the lowest utility object in the queue.

3.3 Priority based proactive refreshing

Staleness related misses could be avoided by proactively re-
freshing objects that are currently in the cache, but are
about to expire in the near future, at the cost of some band-
width related to unnecessary refreshes. Given the trade-
off between reducing staleness misses and the bandwidth
penalty, it is desirable to only proactively refresh those ob-
jects most important for page latency. We consider a family
of strategies which primarily differ in terms of which objects
are proactively refreshed:

e HCJ, which only proactively refreshes HCJ objects. The
primary advantage of the scheme is the simplicity in identi-
fying objects to refresh.

e BO, which only proactively refreshes all objects required
for the page Onload event. While the strategy has the po-
tential to better mirror objects most important for latency,
it is more involved to identify these objects.

e HCJ BO, which only proactively refreshes HCJ objects
needed for the page load event. This strategy has the po-
tential to reduce the bandwidth overheads compared to HCJ
while matching its latency benefits.

For all schemes, a refresh is triggered only when a request
for the object is received and the following conditions are
satisfied: (i) the object is unlikely to receive further accesses
until it expires; and (ii) the estimated number of accesses in
its lifetime is sufficiently high to warrant a proactive refresh.

Specifically, we require that
Ai * €4 S Tpi (2)
3)

Ai * li Z K P;

Here, A;, l;, e;, and P; are respectively the average request
rate, lifetime, time left to expiry and priority of the object.
A; is computed by tracking the number of accesses seen by
the object since it entered the cache, and l; and e; are ob-
tained from the cache-TTL or expiry-time of the object. Tp,
is ideally kept smaller (close to 1) to trigger just-in-time re-
freshes. Note that larger T, and smaller Kp, support more
aggressive refreshing. We evaluate the impact of these pa-
rameters with real traces in §6.2. These thresholds may be
set differently across priority classes to support more aggres-
sive or conservative refreshing for each class.

4 Evaluation Methodology

Our evaluations have two primary goals. First, we seek
to understand the potential latency benefits of our various

1 &
! < | First Server
1 (mem)
1
SPDY request/ -
response First Server
(disk)

Chrome browser
(version 43)

MOD_SPDY

Second
server

%J, At least two
OOO, servers (or
origin)

Figure 8: Experimental setup for evaluating latency benefits.

Placement schemes Proactive refresh schemes
OBS None
Type HCJ
OLType BO
OLDep HCJ BO
All

Table 1: Placement and refresh schemes studied in our evaluation.

schemes for priority-based placement and proactive refresh-
ing, as well as their sensitivity to factors such as page pop-
ularity, CDN hit rates, page composition, and the relative
latencies of various CDN cache layers. Second, we also seek
to understand the impact of prioritization on CDN cache hit
rates, and the bandwidth costs associated with the proactive
refresh schemes.

We achieve the first goal by conducting a detailed emula-
tion study of our schemes for the real-world pages analyzed
in §2). Our emulations allow us to compare schemes in a fair
manner while capturing the heterogeneity in latency (and
object fetch times) across the CDN hierarchy, and realistic
factors such as client execution times. We tackle the second
goal by conducting a detailed analysis of traces from a real
CDN. We present our experimental setup for latency com-
parisons in the rest of the section, latency benefits results in
§5.1, and our trace-driven analysis in §6.

4.1 Methodology for latency comparisons

We use Onload Time (OLT) (defined in §3.1) to quantify the
page load latency. We focus on OLT since it is objective,
easy to determine, and widely used as a measure of page
latency, while other indicators [2] are inherently more sub-
jective. We do not consider the time to download the last
byte for the page since many of the pages we evaluated tend
to request objects indefinitely, and the time for an initial
rendering is more important in practice.

We next discuss factors impacting our comparisons. A
first factor is the CDN hit rates in terms of how many ob-
jects are served from each layer of the hierarchy. Of partic-
ular importance is the edge hit rate (EHR,) which we define
as the fraction of objects served from the first CDN server
(edge). A second factor is the composition of pages. Specif-
ically, the fraction of HCJ and BO objects as well as the
complexity of the dependency graph, can impact our com-
parisons. We compare our schemes with 83 real-world web
pages analyzed in §2, which exhibit a wide range of diversity
in terms of popularity and page composition. We highlight
the characteristics of a page which impact the relative per-
formance of schemes when appropriate. A third factor is
the relative ratio of latency to the various layers of the CDN
hierarchy, which we vary based on real measurements.

94

4.2 Schemes compared

Our schemes (Table 1) include:

Baseline for comparison (OBS): The OBS scheme corre-
sponds to the placement observed when the page was loaded
in the real-world measurements (§ 2). All objects served by
CDN are fixed to the same layer from which it was served
during the real page-load. All cacheable objects not served
through CDN are split across the caching layers according
to the hit-rates for cacheable objects observed in the real
page-load.

Placement schemes: Our CDN placement schemes differ
in their algorithms for assigning objects to the cache layers
according to the fractions described above. We consider the
Type, OLType and OLDep schemes are as described in § 3.1.
Proactive refresh strategies: This includes the HCJ, BO
and HCJ BO schemes described in §3.3 which primarily dif-
fer in terms of which objects are proactively refreshed. We
also consider the None and All strategies as baselines for
comparison which indicate none or all of the objects are
proactively refreshed.

To ensure fair comparisons with OBS, for all schemes, all
non-cacheable objects were always pinned to the farthest
layer (origin). All objects that observed a staleness miss
with OBS were served from the same layer as they were
with OBS if they were not proactively refreshed. For exam-
ple, with no proactive refresh all objects that saw refresh
misses in OBS were pinned, while with the HCJ strategy
non-HCJ objects with refresh misses were pinned. All re-
maining objects were assigned to the CDN cache layers as
per the placement strategy. In doing so, the total number
of objects served from each CDN layer was ensured to be
(i) the same as OBS in the absence of proactive refreshing;
and (ii) the same as OBS augmented with that proactive
refreshing strategy otherwise.

If only a subset of objects of a given priority class (e.g., a
subset of HCJ objects with Type) can be accommodated at
a given CDN layer to satisfy the constraints on the number
of objects that could be served from each layer, our schemes
pick objects from within the priority class randomly. To en-
sure a robust comparison, we generate 50 different placement
configurations with each scheme. We load each web-page
with each scheme for each of its 50 configurations, alternat-
ing across schemes. We clear the browser cache between
runs to eliminate the impact of local browser caching. We
usually summarize the performance of a scheme for a given
page by presenting the median OLT across the 50 configu-
rations, but we also report on higher percentiles.

Many of our schemes require knowledge of objects needed
for Onload and their dependencies. Rather than detailed
activity dependence graphs [36] that may vary across runs,
we obtain more static object level dependencies [27, 37].
Through multiple controlled experiments that each delay an
object in a page, we determine the objects needed for On-
load based on whether the Onload event is delayed. Like-
wise, dependent objects may be determined based on delays
observed in their download times. We determine object im-
portance based on its depth in the dependency graph rather
than consider critical paths which may vary across runs.

4.3 Experimental setup

Figure 8 presents our experimental setup. Web pages are
hosted on a web server (corresponds to an edge server in a
CDN cluster), where TTFBs to the different caching layers

—

@

c

208 2038
50 gos
2 g
[=4

§06 506
— =

) S

< ©
S04 — OBSHCJ © 04
3]) I

© == Type:None g
Py -+ Type:HCJ a
~0.2 ype: 002
W 0BS

o

.

1600 17001800 100 0

Onload Time (OLT) in ms

1400 1500 1900 2000

100
Reduction in median OLT(ms)

200

300

L=
» 0.8
(o)
(=)
©
o
506
c
2
©
- © 0.4
. ==+ Beyond 1K
© TypeHCJ 802 y
100 500 600 —100 0 100 200 300 400 500 GOO

Reduction in median OLT (ms)

(a) OLT for www.mercurynews.com across (b) Median OLT reduction relative to OBS (c¢) Median OLT reduction with Type:HCJ

schemes across all pages

over OBS for Alexa ToplK and Beyondl1K

Figure 9: Latency benefits of prioritized placement and proactive refresh strategies in isolation and combination.

are emulated and the page-load latency from an actual web
browser is measured.

Web pages exhibit significant variability in the number of
objects and aggregate download size for a given web page,
even over short intervals of time. To ensure fair comparisons,
we used an open source tool called web-page-replay [38].
Entire web pages including all constituent objects were first
recorded through downloads from the actual web server(s).
Then, the same recording was replayed for all schemes in
later experiments. Some web pages still showed variability
as they had JS that requested different URLs (e.g., using a
random number or date) over different runs. We modified
the web-page-replay code to replace such occurrences with
constant values to ensure the same objects were requested
for all schemes.

We focus our evaluations on settings where SPDY is en-
abled between the client and the edge server, in order to
highlight that our benefits are complementary to SPDY. We
also note that our schemes show similar benefits in the pres-
ence of traditional HTTP as well. We use apache mod_spdy
server co-located with WPR, and Chrome browser (version
43.0) running SPDY (version 3.0) as the client in all our
experiments. The client uses SPDY to forward object re-
quests to the mod_spdy server, which in turn proxies the
requests (and responses) to (and from) WPR. We modify
the local DNS resolver configuration file in Linux to resolve
all domains to localhost so that the requests are issued to
the apache proxy during the replay experiments and no re-
quests are served over the Internet. In all our experiments,
the client uses the default priorities set by the SPDY imple-
mentation of Chrome when issuing requests to the server.

In order to minimize the impact of browser variability
on page-load times, we disable all extensions, background
and sync activities in the browser using Chrome command
line flags [1]. We set the browser cache and user profile
directories to RAMDisk [3] to minimize the impact of disk
read/write variability on page-load times. We also clear the
RAM disk across runs to ensure clean-slate page-loads where
all objects are fetched from the emulated CDN layer.

5 Results

We begin by evaluating the potential benefits of our place-
ment and proactive refresh schemes, focusing on content
type prioritization (§5.1). We next compare all our place-
ment strategies in the absence of proactive refresh (§5.2),
and all our proactive refresh schemes in the absence of
priority-based placements (§5.3), with a view to understand-

95

ing the potential benefits of prioritizing objects based on
factors other than content type. Finally, §5.4 evaluates the
benefits when such richer prioritization is used as part of
both placement and proactive refresh.

To emulate heterogeneous latencies associated with CDN
cache hierarchies, by default, we use the median TTFB ob-
served across all objects fetched from each layer in our mea-
surement study (Figure 3), but we present a sensitivity study
to our latency settings in §5.4.

We compare the performance of the schemes with 83 real-
world web pages (out of the 100 pages analyzed in §2). The
remaining 17 pages either did not consistently trigger an On-
load, or had 100% of its objects being served from the edge
server(mem), in which case all placement schemes are equiv-
alent. In comparisons where both placement and proactive
refresh strategies vary, we use names such as Type: HCJ (in-
dicating placement using the Type strategy and proactive re-
freshing of HCJ objects). When schemes compared vary in
only in their placement (or refresh) strategy, we abbreviate
by only using names of the placement (or refresh) schemes.

5.1 Latency benefits of prioritization

In this section, we evaluate the potential benefits of prior-
itized placement and proactive refresh, in isolation and in
combination. We focus on schemes that primarily distin-
guish objects based on their content type (Type and HCJ).
Figure 9(a) shows a CDF of the OLTs observed (across
50 placement configurations as described in §4) with OBS,
OBS:HCJ indicating OBS placement with HCJ refresh strat-
egy, Type:None, and Type:HCJ for a popular web-page
www.mercurynews.com (Alexa Rank:1245). The breakdown
of objects served from different layers in the real download
(OBS) for this page was 54% at the edge server (34%mem,
20%disk), 26%remote, and 20%origin. The figure shows that
both priority based placement and proactive refresh inde-
pendently help reduce the OLT when compared to OBS.
However, the combination of the two provides significantly
higher benefits, reducing the OLT by more than 200ms.
Figure 9(b) shows the reduction in median OLT achieved
by the three schemes relative to OBS for all pages. The
figure shows that Type: HCJ provides significant reductions
in OLT over OBS, despite the high EHRs for some of these
pages. For instance, we see a median OLT reduction of more
than 100ms for 40% of the pages and more than 200ms for
10% of the pages. Our results also show the importance of
priority based placement only (7Type:None), which reduces
the median OLT by more than 50ms for 30% of the pages.
Interestingly, we also find OBS:HCJ strategy providing sig-

10°

— OLType
--- OLDep

107! 10-!

— OLType
- OLDep
- Type

CCDF(Fraction of pages)
CCDF(Fraction of pages)

50 100

200 250 50 0
Reduction in median OLT(ms)

50 _0 50 100150 i

Reduction in median OLT(ms) 150

(a) Reduction relative to OBS. (b) Reduction relative to Type.

Figure 10: CCDF of median OLT reduction with Type, OLType and
OLDep for all pages with Y-Axis in log-scale. Proactive refresh is

disabled for all schemes.

nificant latency reductions when compared to OBS by avoid-
ing refresh misses for some HCJ objects. For example, for
15% of the pages OBS:HCJ provides a latency reduction of
more than 68ms. These correspond to pages where > 17%
of all objects were HCJ and saw refresh misses. We also
found similar trends for the reduction in 90%ile latency for
all the schemes, though the benefits were marginally higher.

To understand the impact of prioritization for pages with
different popularities, in Figure 9(c) we show the OLT
reduction with Type:HCJ over OBS split by the Alexa
ToplK and Beyond1K classes (§ 2). The figure shows that
though the benefits are more pronounced for the Beyond1K
pages, prioritization provides significant reduction in Me-
dian OLT even for the ToplK pages. For example, though
Type: HCJ provides 93ms (225ms) reduction in median OLT
for 50%(10%) of the Beyond1K pages, we see benefits of over
157ms for 10% of the Top1K pages also. Overall, our results
clearly emphasize the importance of prioritization through
better placement and proactive refresh strategies.

To ensure statistical significance, we conducted a Mann-
Whitney-Wilcoxon (MWW) test [28] (a non-parametric test
to compare two populations) to reject the null hypothesis
that the OLT distributions observed with the two schemes
being compared are identical. Typically, the MWW test con-
firms significance (at a significance level of 0.05) when our
schemes provide latency reduction over 10 ms. However the
null hypothesis cannot be rejected when our schemes show
more marginal reductions, or marginal increases. These
cases usually correspond to scenarios where prioritization
schemes provide no benefit — e.g., 33% of the pages see no
HCJ refresh misses at all, and hence the OBS:HCJ scheme
provides no intrinsic benefits over OBS for these pages. In-
terestingly, the latency increase over OBS is significant for
1 page with Type: HCJ, and for 2 pages with Type: None. On
further examination, we found that the increase could be at-
tributed to limitations of Type-based prioritization. These
pages had some important Non- HCJ objects required for the
initial page rendering (Onload), which were not placed in the
edge by Type, but interestingly were served from the edge
in the OBS run. For such cases, more sophisticated prior-
itization schemes like OLType or OLDep could potentially
provide benefits.

5.2 Comparing placement strategies

We next evaluate the benefits of OLType and OLDep which
consider factors besides content type in placement decisions.
Since our focus is on placement schemes, our comparisons
are done without proactive refresh.

Figure 10(a) presents a CCDF of the median OLT reduc-
tion relative to OBS for all the placement schemes, and all
the pages in our experiment set. While all schemes show sig-

96

nificant reductions compared to OBS, OLType and OLDep
provide only slightly higher benefits than Type. The ben-
efits are marginal for most pages, however somewhat more
significant at the tail. Note that the CCDF is shown with
Y-Axis in log scale since the schemes show more prominent
difference in the tail. Figure 10(b) shows the median OLT
reduction of OLType and OLDep relative to Type. Across
all pages, OLDep achieves a median OLT reduction higher
than 35ms for 12% of the pages, while for 6% of the tail
pages both schemes achieve median OLT reduction higher
than 50ms relative to Type. Though we find higher bene-
fits for the Beyond1K pages, we also see latency savings of
more than 35ms for 14% of the ToplK pages as well, with
as much as 71ms for the tail page. We have also verified the
statistical significance of our results using the MWW test.

To better understand these results, and when different

schemes are most helpful, we analyze the page composition
into objects in 4 categories as follows — (i)HCJ and Non-
HC/J objects; and (ii) required for Onload (BO) or not (AO).
Figure 11(a) shows the composition of objects in these 4
categories for two example pages where OLDep and OLType
show benefits over Type. In general, the benefits with these
schemes depend both on the EHR, and the composition of
the page, among other factors.
When do OLType and OLDep perform better than
Type? Both OLType and OLDep prioritize objects before
Onload. For www.att.com, the EHR is sufficiently high
that all BO objects may be placed in the edge, hence both
OLType and OLDep prioritize all BO objects to the edge.
However, Type prioritizes HC.J objects (agnostic of whether
they were required for Onload) over Non-HCJ BO objects,
and is unable to accommodate all Non-HCJ BO objects
at the edge. Indeed, Figure 11(b) confirms that for this
page, OLType and OLDep perform better than Type. Note
that the two schemes themselves perform comparably - this
makes sense due to the high EHR both schemes are able to
place all BO objects in the edge.

Interestingly, we observed many other pages where Type
performs comparably to OLType and OLDep even though it
is not able to place all Non-HCJ BO objects in the edge.
On further analysis, we found that the Non-HCJ objects
were leaves in the dependency graph for these pages — conse-
quently, the performance with Type was relatively unaffected
even though these objects were not placed in the edge. In
contrast, for pages like www.att.com some of the Non-HCJ
objects were internal nodes in the dependency graph, in the
sense that a lot of object fetches were dependent on these ob-
jects (delaying the internal Non- HCJ objects delays a lot of
other objects being fetched). For example, in www.att.com
some of the Non-HCJ internal nodes were sprited images
and the execution of JS code waits on these images. As
a result, delaying these images delays all the objects to be
fetched after executing the JS code. Thus careful placement
of the internal Non- HCJ objects was particularly important
to reduce the page latencies.

When does OLDep perform better than OLType? For
www. conduit.com, 93% of the objects are required before On-
load with more HCJ BO objects (60%) than can fit in the
edge. While both OLDep and OLType prioritize HCJ BO
objects, OLDep makes finer-grained distinctions, and prior-
itizes objects at the highest levels of the dependency graph,
which are more critical for latency. Indeed, Figure 11(c)
confirms that OLDep performs better than OLType for this

_ Type
== + OLType
+ OLDep + OLDep

0OBS + 0BS

: \
: .

Type
OLType

CDF(Fraction of configurations)

Non-HCJ BO mHCJ BO 1.0
OHCJ AO ONon-HCJ AO /é\
o
100 - =038
©
g 3
a 80 €
£ g 0.6
o = <
_i 60 =) 2
5 E 8 é 604
5 40 2 za e & K3
® 2 zee [in 09 B
L N © ~0. ..
2 533 & 3
5<% :
= 52 (&) ”
0 o R
50 300

=1

www.att.com www.conduit.com

(a) Percentage of objects in each category

850
Onload Time (OLT) in ms

(b) OLTs for www.att.com (EHR 84%)

900

1000 550 600 G50 700 750 800
OLT (msec)

950

(¢) OLTs for www.conduit.com (EHR 20%)

Figure 11: Impact of page composition on the relative performance of schemes

page. OLType and Type perform similar - this is because
there are only a few HCJ AO objects and hence OLType and
Type are choosing from relatively the same set of objects to
place in the edge. More generally, OLDep also provides ben-
efits over OLType for pages where all HCJ BO but not all
BO objects fit in the edge, and some Non-HCJ BO objects
are internal nodes in the dependency graph.

Finally, we found rare cases where OLDep performs worse
than Type, when objects deeper in the dependency graph
have more impact on the OLT than the objects closer to
the root in the graph. For example, in www.comcast.com,
a JS object (appearing as a leaf in the dependency graph)
had a larger impact on the OLT owing to its higher execu-
tion times than other internal Non- HCJ objects, while Type
placed all HCJ objects at the edge. While prioritizing ob-
jects occurring consistently on the critical path across runs
(and clients) may help, determining such objects is not triv-
ial, and we did not explore such a technique in depth given
the small number of occurrences.

5.3 Comparing proactive refresh strategies

In this section, we fix the placement scheme as OBS, and
compare the performance of various proactive refresh strate-
gies described in §4. Since proactive refresh strategies dif-
fer only in their handling of refresh misses, we confine this
study to only those pages(61 pages) that saw at least one
stale access in the real page-load. Figure 12(a) shows that
all strategies give significant latency reductions relative to
OBS. For the vast majority of pages, the schemes perform
similarly, though there are a small number of pages where
BO and All perform better. Interestingly, we also find that
the HC'J BO scheme performs similar to HCJ while incurring
lesser bandwidth costs.
When does BO perform better than HCJ? We illus-
trate this using one of the pages www.mercurynews.com,
where BO performs better than HCJ. Figure 12(b) shows
the CDF of OLT's observed with each of the proactive re-
fresh strategies. Clearly, all refresh schemes perform better
than None, while BO performs even better than HCJ (and
HCJ BO). We note that the page observed multiple refresh
misses for Non-HCJ BO objects in the higher levels (L 9-14)
of the dependency graph as shown in Figure 12(c). These
objects have further dependent objects (in L15), and im-
pacts the critical path of the page-load. Therefore, the BO
scheme, which proactively refreshes all objects needed for
Onload (including Non-HCJ BO objects), provides signifi-
cant latency reductions.

Overall our results show that (i) HCJ suffices in most
cases, though BO can provide further latency reduction for

97

some pages; (ii) BO itself gives all the benefits of ALL with
lower bandwidth costs; and (iii) HCJ BO provides compa-
rable benefits to HCJ with lower bandwidth costs.

5.4 Sensitivity to origin TTFB

In this section, we achieve two goals. First, we evaluate the
benefits achievable by considering factors other than con-
tent type in both placement and proactive refresh strate-
gies together. Second, we study the sensitivity of the ob-
served latency reductions with our schemes to heterogeneity
in TTFBs for fetching objects. We focus on the TTFB to ori-
gin servers since they show the highest variability and have
the highest impact on the page-load latency. Therefore, we
conduct the sensitivity study by varying the TTFB to the
highest layer retaining the same values for the other cache
layers (used in §5). We compare OLDep:BO with OBS for
three different ratios of CDN edge to origin server TTFBs
viz. 1:4,1:8 and 1 : 16 (rounded-off) representing the
25th, median and 75th percentiles respectively from the real
downloads (see §2). Note that the ratio used in all our prior
experiments (§5) is 1: 8.

Figure 13 shows the reduction in median OLT with
OLDep: BO compared to OBS split by pages in Alexa ToplK
and Beyond1K classes. Clearly, OLDep:BO which com-
bines both placement and proactive refresh provides signif-
icant benefits — with 1 : 8, the median latency reduction is
> 100ms for 30% of the Top 1K pages and > 100ms for 59%
of the Beyond 1K pages. As expected, the benefits with pri-
oritization increases with larger origin TTFB. Interestingly,
the benefits are higher for both the ToplK and Beyond1K
pages when the origin TTFB is high (ratio 1 : 16). For in-
stance, the median OLT reduction for 50% of the Beyond1K
pages is about 2X higher with 1 : 16 than 1 : 8, while for
50% of the Top1K pages we see almost 3X higher reduction
with 1: 16 than 1: 8. Though not shown, the reduction in
median OLT with OLDep: BO was as much as > 1s for 1: 16
(and 586ms for 1 : 8) at the tail.

We now study the relative benefits of OLDep:BO over
Type:HCJ, with the various edge to origin ratios. Fig-
ure 14 shows a CCDF of the reduction in median and
90%ile OLTs with OLDep: BO over Type: HCJ for all pages.
The figure shows that the latency benefits of OLDep:BO
over Type:HCJ increases with higher ratios. The trends
hold for reductions in both the median and 90%ile OLTs,
with reductions in the median OLTs as high as 700ms for
www.mercurynews.com which had many Non-HCJ refresh
misses. Overall our results show that OLDep:BO gives
higher benefits over Type:HCJ for pages at the tail, espe-
cially when the TTFB to origin is high.

10()

%

=
=

'S

CCDF(Fraction of pages)
=3

CDF (Fraction of configurations)

= N w
x = 258

Num miss/refresh objects

| 0

0 100 200 300 400 50C
Reduction in median OLT (ms)

(a) CCDF of the median reduction in OLT (b) OLTs for www.mercurynews.com with (c) Composition
different refresh strategies.

relative to OBS with Y-Axis in log scale.

K
1200 lfél)(l 1400 1500 I(i(Jl) 1700 1800 1900 2000
Onload Time (OLT) in ms

EE Non-HCJ refresh
71 HCJ refresh
[Non-HCJ miss
[HCJ miss

_\a
e
- d

NN

WWW. METCUTYNEWS.COM

Figure 12: Latency reduction with proactive refresh. All schemes use the OBS placement.

500

! T
2 ! I
| |
= 400 Top1K | Beyond1K |
o ! |
8 300 -
Nl | |
£ : |
£ 200 ' ! T
S |
= '
2 100 - C] !
&) o ! Q | 4
0 E 3 - —
14 1.8 1:.16 14 18 _1:16

Ratio of Edge to Origin TTFB

Figure 13: Median OLT reduction with OLDep:BO over OBS
with three different edge to origin TTFB ratios split by Alexa
ToplK and Beyond1K. The boxes show the 25th, 50th and 75th
and the whiskers showing the 10th and 90th percentile pages.

100

50%ile
90%ile

1071 .

CCDF(Fraction of pages)

= 1:16
0 100 200 300 400 500 600 700 800
Reduction in OLT(ms)

Figure 14: CCDF of the reduction in 50%ile and 90%ile OLTs
for all pages with OLDep:BO over Type:HCJ for the three edge
to origin TTFB ratios

1:4 3 1:8

6 Trace-driven evaluation

In this section, we conduct trace-driven simulations for eval-
uating the feasibility of priority-based caching and proactive
refresh in CDNs. The request traces for this study were
obtained from the edge cluster of a real CDN deployment,
which serves a wide class of web traffic, and consists of 162
million requests for about 13.5 million distinct objects. The
week long trace is non-sampled and consists of all client re-
quests observed at each of the 18 servers in the edge cluster.
For all simulations in this section, we set the cache capacity
to those seen in the real deployment. Since the page struc-
ture (dependencies) and Onload information is not deducible
from the trace, we use content-type based prioritization, and
focus on miss-rate reduction (and bandwidth overhead) for
all experiments in this section.

98

100

@
o

aHcJ

R=1.75 R=4

N B O
o O o

(relative to LRU)

o

% reduction in miss rate

OOverall

-5 R=175 R=4

0 ==

% increase in miss rate
(relative to LRU)

R

Max achievable reduction

R=7 R=15 R=31

R=127 R=511
@ 38 41

@Non-HCJ

oll

< 0 N ® OO - o Mm%
P P

N @K P PO - NO S ©
- - EPCERTETERC R
Level in dependency graph
of misses at each
level of the dependency graph for

R=inf LRU-pin

97 103

Il

~
Py

=15

R=31

R=127 R=511 R=inf LRU-pin

(b)
Figure 15: Miss rates of priority based caching schemes when
compared to LRU(Size), and LRU-Pin.

6.1 Feasibility of priority based caching policy

We first show the feasibility of our approach in reducing the
miss rate for the critical objects without significantly affect-
ing the overall hit rates of the caches. We emulate the cache
using our week-long trace for two caching algorithms - our
priority-based caching described in §3.2, and (ii) LRU(size)
- LRU with a size threshold, that is commonly employed by
CDNs today. We evaluate our algorithm by varying the rel-
ative importance of the HCJ and Non-HCJ objects, which
is captured by the parameter R, the ratio of the priority of
HCJ objects to the priority of Non-HCJ objects. We also
compare our algorithm with a variant of LRU which prefer-
entially pins the HCJ objects to the cache and ensures that
they are never evicted by a Non- HCJ object. However, HCJ
objects may evict Non- HCJ objects and other HCJ objects
similar to LRU. We use the same cache size and object-size
threshold used by the LRU across all the schemes.

Figure 15(a) shows the reduction in miss rates for the HC.J
objects for the different schemes relative to the miss rates
observed with the LRU(size). The horizontal line at the
top of the graph shows the maximum achievable reduction
in miss rates, where the rest of the misses are compulsory
misses in our trace. Figure 15(b) shows the corresponding
increase in the overall miss rate as well as in the miss rate
for Non-HCJ objects. From the figure, we see that as R in-
creases, the reduction in miss rate for HCJ objects ramps up
quickly for smaller R (flattens out at higher R), while the in-
crease in miss rate for Non- HCJ objects increases gradually
for smaller R and more rapidly for higher R. This shows the
opportunity for the CDN to tune R, such that, it reduces

con® 60
= O 0
§25 40
= 98
S82 2
S S
[0
3 T g 0 |
T B 0.01 0.1 1 10 100
Threshold (K)
@ DAl mHCJ

c 10 3.012 3.012 3.012 3.004 2.821
e 1
2 Ie]
8z 0.1 0.019 0.019 0019 0.014 0.007
52 0.01 :
C

0.01 10 100

0.1 1
Threshold (K)
b

Figure 16: Impact of the HCJ and All proactive refresh strategies.
Note that both schemes reduce stale accesses for HCJ objects by
identical amounts.

the miss rate for HCJ objects without increasing the over-
all miss rate of the cache. In our trace, this occurs close to
R = 15, which reduces the miss rate for HCJ objects by 61%
without increasing the overall miss rate. We also see that
while LRU-pin performs the best for HCJ objects, it dras-
tically affects the overall miss rates. Our results show that
our priority based caching scheme is able to significantly re-
duce the miss rates for HCJ objects, while incurring only a
modest increase in the overall miss rate.

6.2 Bandwidth impact of proactive refresh schemes

We now show the benefits of prioritization in reducing the
additional bandwidth costs associated with proactive re-
freshing. Since our traces do not have Onload information
for objects, we focus our evaluation in this section on the
HCJ and All proactive refresh schemes. We augment our
priority-based caching algorithm with proactive refreshing as
described in §3.3 and emulate the cache with our week long
traces. In all our experiments, we set the threshold T = 2
(for just-in-time refreshes), but vary the parameter K for
the HCJ objects to illustrate the bandwidth-cost and per-
formance trade-off with conservative and aggressive proac-
tive refreshing. Figure 16 compares the percentage reduc-
tion in stale accesses for HCJ objects, and the correspond-
ing increase in bandwidth incurred with both the schemes.
Note that the bandwidth costs estimated here are an up-
per bound since entire objects need not be fetched again if
they are not modified at the origin, but that information
is not available to us in the trace. The figure shows that
both All and HCJ schemes reduce stale accesses for HCJ
objects by 60%, while incurring an overall bandwidth in-
crease of 3% and 0.02% respectively. Note that a smaller K
(aggressive refreshing) results in fewer stale accesses, while
a larger K (conservative refreshing) lowers the bandwidth
costs of proactive refreshing. Overall, our results highlight
the opportunity for priority-based proactive refresh in signif-
icantly reducing staleness for HCJ objects, while incurring
only modest bandwidth penalties.

7 Related work

While SPDY [19] allows resource prioritization, it supports
only priority based processing (and transmission) of objects
from the server to a client [5]. Recent work [12] looks at
re-prioritizing delivery of objects in a web page when they
are pushed from a server to a mobile client. In contrast, our
focus is on an orthogonal problem — enabling priority aware-
ness within the CDN infrastructure. All our experiments in-

99

cluding the OBS baseline are run with SPDY enabled, and
our benefits are complementary to SPDY. Recent research
has shown that SPDY is not always beneficial [17,37]. Our
proposals in this paper do not rely on SPDY - incorporating
priority awareness in CDNs has benefits even with HTTP.

Our work builds on the rich literature on caching al-
gorithms for web caches, proxy caches and CDNs (e.g.,
[6,8,9,13,24,35,39]). We adapt the well known Greedy-
Dual-Size algorithm [13] which considers how to balance lo-
cality of access patterns with object size and the variable
costs associated with fetching objects on a miss, given some
network paths could be more expensive than others. Others
have extended the algorithm to more explicitly bias it to-
wards more popular objects [8,24]). In contrast to all these
works, our focus is on determining the importance of an ob-
ject within a page for lowering page latency, and balancing
object popularity and priority.

Prefetching to reduce web latencies has been extensively
studied since the earliest days of the web (e.g., [29]). Many
of the early works focused on client-side prefetching (e.g.,
[29]) in which clients initiate prefetching guided by predic-
tions on which files are likely to be accessed soon (e.g., based
on models that indicate which hyper-links a client is likely
to click when on a given page [29]). Others [23,25, 34, 40]
have investigated prefetching in CDNs and proxy servers by
using global access patterns to identify which objects should
be proactively replicated to caches. While we leverage these
techniques, we consider the more limited goal of avoiding
refresh misses on objects already in the cache by proactively
refreshing them. Further, we seek to proactively refresh ob-
jects that are more important for reducing page latencies,
given refresh misses are a key component of overall miss
rates for popular pages.

Researchers have explored how objects must be placed
in a hierarchical caching system [15, 26,32, 33| so that the
average latencies are minimized given constraints on cache
capacities [26] or bandwidth [33]. [32] propose mechanisms
to improve end user response times by tracking the data
location and minimizing the number of hops on hits and
misses within the CDN hierarchy. In contrast, our focus is
on placement of objects taking priority into account - specif-
ically, objects that are not as popular may be placed lower
in the hierarchy since they may be critical for page-load.

8 Conclusions

In this paper, we have made two contributions. First, we
have shown that there is significant potential to reduce web-
page latencies through page-structure-aware strategies for
placing objects in CDN cache hierarchies. Second, we have
presented several strategies to this end which differ in their
degree of page-awareness, and conducted a detailed evalu-
ation study of their benefits. Our evaluations with more
than 80 real-world web pages show that for popular pages,
more than 30% of pages see median OLT reductions higher
than 100ms, while for less popular pages, the median OLT
reduction is more than 100ms for more than 59% of the
pages, with some pages showing latency reductions as high
as 500ms. Both placement and proactive refreshing are im-
portant in achieving the benefits, though each can help in
isolation. For the vast majority of pages, the Type:HCJ
scheme provides most of the benefit. However, OLDep:BO
can provide significant additional benefits for some pages,
especially in lower hit rate regimes, when there are Non-

HCJ internal nodes in the dependency graph, and when the
penalty of going to the origin is higher. Finally, using trace
driven simulations, we show the feasibility of priority-based
caching approach to reduce miss rates of page-critical ob-
jects in CDNs by 60% with minimal increase in overall miss
rates. We also highlight the opportunity of minimizing stal-
eness related misses for objects critical for latency by as
much as 60% while incurring additional bandwidth costs of
less than 0.02%.

9 Acknowledgements

We thank the anonymous reviewers for their constructive
feedback and comments. We also thank Mangesh Kas-
bekar for his valuable inputs during discussions. This work
was supported in part by the National Science Founda-
tion (NSF) under Career Award No. 0953622, Award No.
CCF-1535972, NSF Award Numbers 1162333, 1345284, and
USAF Award FA8750-14-2-0150. Any opinions, findings and
conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the
views of NSF or USAF.

10 References

[1] Chrome command-line switches. http://goo.gl/7t5nk5.

[2] Google Speed-index. https://goo.gl/ TKMJTw.

[3] RAMDisk for faster browsing. http://goo.gl/qtbDTe.

[4] SPDY best practices. http://goo.gl/fPczq3.

[5] SPDY Protocol(draft3)-stream-priority.
http://goo.gl/5SPH7TUH.

[6] M. Abrams et al. Caching proxies: Limitations and
potentials. 1995.

[7] Alexa. Available at http://www.alexa.com/topsites.
[8] M. Arlitt et al. Performance evaluation of web proxy
cache replacement policies. Technical report, 1998.

[9] J.-C. Bolot et al. Performance engineering of the world
wide web: Application to dimensioning and cache
design. Computer Networks and ISDN Systems, 1996.

[10] M. Butkiewicz et al. Understanding website
complexity: measurements, metrics, and implications.
In Proc. of the ACM IMC, 2011.

[11] M. Butkiewicz et al. Enabling the transition to the
mobile web with websieve. In Proc. of the ACM
HotMobile, 2013.

[12] M. Butkiewicz et al. Klotski: Reprioritizing web
content to improve user experience on mobile devices.
In Proc. of the USENIX NSDI, 2015.

[13] P. Cao et al. Cost-aware www proxy caching
algorithms. In Proc. of the USENIX USITS, 1997.

[14] A. Chankhunthod et al. A hierarchical internet object
cache. In Proc. of the USENIX ATC, 1996.

[15] H. Che et al. Hierarchical web caching systems:
Modeling, design and experimental results. IEFE
Journal on Selected Areas in Commumnications, 2002.

[16] J. Dean et al. The tail at scale. Communications of
the ACM, 2013.

[17] J. Erman et al. Towards a SPDY’ier mobile web? In
Proc. of the ACM CoNEXT, Dec 2013.

[18] B. Forrest. Bing and google agree: Slow pages lose
users. http://goo.gl/BNjh3G, 2009.

[19] Google. SPDY: An experimental protocol for a faster
web. http://goo.gl/vy63I14.

[20] J. Hamilton. The cost of latency.
http://goo.gl/26j6S6, 2009.

[21] T. Hoff. Latency is everywhere and it costs you
sales-how to crush it. http://goo.gl/T4vqjZ, 2009.

[22] S. Ihm et al. Towards understanding modern web
traffic. In Proc. of the ACM IMC, 2011.

[23] Y. Jiang et al. Web prefetching: Costs, benefits and
performance. In Proc. of the 7th international WCW
workshop. Boulder, Colorado, 2002.

[24] S. Jin et al. Popularity-aware greedy dual-size web
proxy caching algorithms. In Proc. of the IEEE
ICDCS, 2000.

[25] R. Kokku et al. A non-interfering deployable web
prefetching system. In Proc. of the USENIX USITS,
2002.

[26] M. R. Korupolu et al. Coordinated placement and
replacement for large-scale distributed caches. IEEE
TKDE, 2002.

[27] Z. Li et al. Webprophet: Automating performance
prediction for web services. In Proc. of the USENIX
NSDI, 2010.

[28] H. B. Mann et al. On a test of whether one of two
random variables is stochastically larger than the
other. The annals of mathematical statistics, 1947.

[29] V. N. Padmanabhan et al. Using predictive
prefetching to improve world wide web latency. ACM
SIGCOMM CCR, 1996.

[30] S. Souders. Onload event and post-onload requests.
http://www.stevesouders.com/blog/2012/10/30/
ga-nav-timing-and-post-onload-requests.

[31] S. Souders. Velocity and the bottom line.
http://goo.gl/SaaVvv, 2009.

[32] R. Tewari et al. Design considerations for distributed
caching on the internet. In Proc. of the IEEE ICDCS,
1999.

[33] A. Venkataramani et al. Bandwidth constrained
placement in a wan. In Proc. of the ACM Symposium
on PODC, 2001.

[34] A. Venkataramani et al. The potential costs and
benefits of long-term prefetching for content
distribution. Computer Communications, 2002.

[35] J. Wang. A survey of web caching schemes for the
internet. ACM SIGCOMM CCR, 1999.

[36] X. S. Wang et al. Demystify page load performance
with wprof. In Proc. of the USENIX NSDI, 2013.

[37] X. S. Wang et al. How Speedy is SPDY? In Proc. of
the USENIX NSDI, April 2014.

[38] web-page replay. Record and play back web pages
with simulated network conditions.
https://www.code.google.com/p/web-page-replay/.

[39] R. P. Wooster et al. Proxy caching that estimates
page load delays. Computer Networks and ISDN
Systems, 1997.

[40] B. Wu et al. Objective-optimal algorithms for
long-term web prefetching. IEEE Transactions on
Computers, 2006.

