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ABSTRACT
Delivering videos under less-than-ideal network conditions with-
out compromising end-users’ quality of experiences is a hard prob-
lem. Virtually all prior work follow a piecemeal approach—either
“tweaking” the fully reliable transport layer or making the client
“smarter.” We propose VOXEL, a cross-layer optimization system for
video streaming. We use VOXEL to demonstrate how to combine
application-provided “insights” with a partially reliable protocol for
optimizing video streaming. To this end, we present a novel ABR
algorithm that explicitly trades off losses for improving end-users’
video-watching experiences.

VOXEL is fully compatible with DASH, and backward-compatible
with VOXEL-unaware servers and clients. In our experiments em-
ulating a wide range of network conditions, VOXEL outperforms
the state-of-the-art: We stream videos in the 90th-percentile with
up to 97% less rebuffering than the state-of-the-art without sacrific-
ing visual fidelity. We also demonstrate the benefits of VOXEL for
small-buffer regimes like the emerging use case of low-latency and
live streaming. In a survey of 54 real users, 84% of the participants
indicated that they prefer videos streamed using VOXEL compared
to the state-of-the-art.

CCS CONCEPTS
• Networks → Application layer protocols; • Information
systems → Multimedia streaming.
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1 INTRODUCTION
Video traffic constitutes the majority of Internet traffic [9, 59]. Re-
searchers also forecast that video will account for 82% of all IP traffic
by 2022 [9]. The need to stream video traffic in varying, and often
less-than-ideal, network conditions while keeping end-users’ qual-
ity of experiences (QoEs) unaffected is, hence, more dire than ever
before [19, 21, 27]. Our focus in this paper is specifically on a key
determinant of end-user QoEs: uninterrupted playback. Support-
ing uninterrupted playback will likely have a far reaching impact,
especially with live streaming and broadcasts over the Internet
becoming commonplace [2, 74].

A video stream is split into segments—sequence of bytes spanning
a predetermined (typically, 2-10 s) time duration [37]. Streaming
these segments over the Internet without interrupting playback
at the client (i.e., video player) is a notoriously hard problem. It is
exacerbated by the fact that each video segment has an implicit
deadline within which it must be delivered to the client; the client
will, otherwise, stall playback to wait for the segment to arrive.
Such playback interruptions have a discernible impact on end users
and degrade their video-watching experiences, as measured via
QoE metrics [15]. There is a rich literature on video streaming, but
virtually all of them focus on either “fine-tuning” TCP or making
clients “smarter” by using adaptive bitrate (ABR) algorithms.

Prior efforts on fine-tuning TCP for video streaming include side-
stepping packet losses [40], supporting real-time delivery [7, 20,
40, 68], adding deadline-awareness [10, 47], using retransmissions
for sending new data [45], and using coding techniques for loss
recovery [35, 70]. They all use TCP, a reliable transport, although
video streaming can tolerate some packet loss [17]. Upgrading or
improving TCP is also hard. While the QUIC protocol makes it
easy to extend the transport [31], it offers only reliable streams for
communication,1 and, thus, inherits most of TCP’s problems. Using
a reliable transport for video streaming has remained, thus far, the
status quo, and we question this choice.

To make clients smarter, prior work also proposed numerous
ways of improving ABR algorithms [23, 33, 43, 63, 64, 73], which are
client-side mechanisms that dynamically choose a bitrate for each
video segment based on several factors, e.g., available bandwidth
estimate and playback buffer occupancy. They directly or indirectly

1There have been a few proposals to support unreliable delivery in QUIC (e.g., [42,
53, 66], but none have been standardized or implemented in Google QUIC, as of this
writing.
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optimize one or more objective QoE metrics, e.g., rebuffering (or
stall) duration, average bitrate, and bitrate switches. Notwithstand-
ing the ABR-algorithm improvements, they simply assume that
video segments must be downloaded in their entirety—thus, inherit
the problems of reliable delivery for video streaming.

In this paper we propose VOXEL, a two-pronged approach that
combines a partially reliable transport with application-provided
“insights” for optimizing video streaming. More specifically, VOXEL
combines our partially reliable implementation of Google QUIC
(henceforth, referred to as QUIC*) with the insight that not all
frames of a video require reliable delivery—frame-drops do not
necessarily compromise end-user QoE [17, 32].

★ First, we present a new server-side algorithm that performs a one-
time analysis of the impact of varying amounts of frame-drops on the
end-user QoE for a given video.One recent work, BETA [32], pursues
a similar approach, though we show that BETA (a) implements only
a subset of features of VOXEL, (b) is not as deployment friendly as
VOXEL, and (c) performs poorer than VOXEL in most of our tests.

★ Second, we present a novel ABR algorithm that explicitly trades
off frame losses for optimizing end-user QoE. While we leverage
some ideas from prior work, VOXEL is the first end-to-end system
that introduces a QoE-metric-based frame-importance measure
and ranking—a new capability not found in any prior work. This
capability enables VOXEL to control video quality in a fine-grained
manner by dropping different types of frames (including referenced
frames) to combat challenging network conditions, with minimal
QoE impairment. Thus, VOXEL outperforms state-of-art solutions
(e.g., MPC [73] and BOLA [63]) as well as recent work, e.g., BETA
(see §5).

★ VOXEL is more than a simple research prototype. VOXEL works
seamlessly with DASH and is backward-compatible with exist-
ing VOXEL-unaware clients. VOXEL is also easily deployable given
QUIC’swidespread adoption both on the server side (e.g., in CDNs [1,
11]) and client side (e.g., in major web browsers [12, 65]). In our
evaluations, VOXEL streams videos in the 90th-percentile with up
to 97% less rebuffering than the state-of-the-art without sacrificing
end-users’ QoEs.

★ VOXEL is QoE-metric-agnostic. We use the all-component
SSIM [67] of FFmpeg’s ssim filter for estimating QoE in these eval-
uations, but also show that VOXEL is QoE-metric-agnostic: VOXEL
outperforms the state-of-the-art even with respect to other widely
used metrics, e.g., VMAF [49] and PSNR.
Summary of our contributions.

★ We describe an offline, server-side algorithm that rank orders
frames, within each segment, based on the impact of their loss
on QoE. The algorithm reveals that at the highest quality level at
least half the segments (of all videos in our tests) can sustain a 10%
to 20% loss, and still offer an excellent video with imperceptible
impairment (i.e., SSIM of 0.99).

★ We present a novel ABR algorithm, ABR*, that combines the
frame-drop-tolerance insights and the partially reliable transport
to optimize directly the end-user QoE.

★ In our tests, VOXEL (ABR* with QUIC*) outperforms state-
of-the-art (BOLA with QUIC) as well as BETA, suffering little or
no rebuffering, and offers excellent QoE across a wide range of
conditions. Even in live-streaming-like settings over challenging

cellular-network conditions, VOXEL suffers at least 25% and at most
97% less rebuffering, in the 90th-percentile across all video segments,
than the state-of-the-art.

★ We conducted a real user survey with 54 users, 84% of whom
indicated that they prefer videos streamed using VOXEL compared
to the state-of-the-art.

Our implementation is publicly available on GitHub [50].

2 BACKGROUND
Streaming video over HTTP typically entails using either dynamic
adaptive streaming over HTTP (DASH) [60] or HTTP live streaming
(HLS) [52]. Although DASH and HLS have similar requirements
regarding the video format, we restrict our attention to the codec-
agnostic DASH. The video data itself is usually encoded as H.264,
the most widely used video codec [5, 16], and encapsulated in an
MP4 container. The video file is split into equal-duration, typically 2-
10 s long, segments. Amanifest file specifies the names and locations
of the video segments stored on the server, the available quality
levels or bitrates per segment, encoding details, and other relevant
metadata. Streaming via DASH begins with the client requesting
the manifest file from the server [60]. To handle varying network
conditions, clients utilize an ABR algorithm to determine which of
the available quality levels of a segment to download.
Codecs. The H.264 codec defines three types of Frames: Intra-coded
(I), Predicted (P), and Bi-directional predicted (B). Prediction refers to
a frame using other frame(s) as reference to reduce the amount of
data it contains; the referrer only stores the difference with respect
to the reference(s). References between frames are at macroblock
granularity. I -Frames do not have references to any other frames,
and can, hence, be rendered instantaneously by the client. A P-
Frame, in contrast, depends on one or more previous frames, of
any type, and a B-Frame depends on both previous and following
frames. The loss of a frame that is referenced by many other frames
introduces errors in decoding the referring frames, which in turn
results in visible impairments.

Technically, the H.264 codec defines slices, which refer to spa-
tially distinct regions of a frame, and predictions happen at the slice
level [34]. Since frames in our videos consist of only one slice, we
use the generic term, frames.
Adaptive bitrate (ABR) algorithms. ABR algorithms guide the
client in selecting a video quality level that is appropriate for the
current network conditions (e.g., throughput). Quality levels cor-
respond to bitrates that are known a priori. Thus, the algorithms
help a client to determine the highest segment quality that can
be downloaded on time (i.e., before it must be rendered by the
client) under the estimated conditions. There are 3 categories of
ABR algorithms: throughput-, time-, and buffer-based. Throughput-
based ABR algorithms, (e.g., PANDA [39]), base their decision, on
estimated network throughput. Time-based ABR algorithms, (e.g.,
ABMA+ [3]), use segment download times, while buffer-based al-
gorithms rely solely on playback buffer occupancy [24]. Recent
hybrid ABR algorithms (e.g., MPC [73] and BOLA [63]) combine
throughput and buffer-based approaches to improve performance.
QoE metrics. The structural similarity index (SSIM) is a widely
used full-reference QoE metric that captures the visual quality of a
video stream [67]. To calculate SSIM scores, each frame is compared
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Figure 1: (a) A significant number of frame-drops (excluding the I-Frame) can be tolerated while still guaranteeing an SSIM score of 0.99; The
frame-drop tolerance (b) diminishes when switching down from Q12 to Q9, but (c) improves if we also lower the target SSIM score from 0.99 to
0.95; (d) Low quality (e.g., Q9 & Q6) segments typically have SSIM scores less than 0.99.

to its pristine version, the difference is scored and averaged over all
compared frames (e.g., a segment). Such an average is widely used
and is well-suited for our evaluations: 3 low-score (e.g., SSIM=0.6)
frames in a 4 s segment suffice to lower the total segment score to
drop below excellent (e.g., SSIM< 0.99).

As with any metric, SSIM has its shortcomings. In our case, it
may mask the loss, if any, of temporal smoothness of the video. Al-
ternatives to SSIM, including ITU p.1203 [29] and, the more recent,
VMAF [49], exist. Both VMAF and p.1203, however, use trained
models to assess the visual quality of videos delivered without any
loss (i.e., via reliable transport). Unlike SSIM, utilizing these models
on videos with corrupted frames will result in undefined model
behavior and may yield invalid results [29, 49], which is also con-
firmed by the authors of p.1203 [30]. We focus, hence, on SSIM
in our tests, but also use VMAF and PSNR, wherever feasible, to
demonstrate that VOXEL is QoE-metric agnostic.
Reference quality level. More than half of the TV’s shipped in
2018 are native 4K [44] and half of YouTube’s recommended mobile
devices have ≥1440 p screens [76]. YouTube recommends uploading
content in up to 4K [75]. Low-resolution video will be scaled up to
the native resolution of end-users’ devices, potentially degrading
visual quality. To accurately capture the QoE of users with high-
resolution devices, we chose 4K as the (pristine) reference in the
SSIM, VMAF, and PSNR calculations. We do not use the original
uncompressed source video as reference, as compression-artifacts
are orthogonal to this study. We measure, instead, the difference
between the highest quality a user could see and the quality that
they actually see. The quality score, hence, indicates how close the
stream’s quality is to the highest feasible quality.

3 INSIGHTS
Although early academic work on streaming used UDP, recent work
and all HTTP streaming use a reliable transport (i.e., TCP). Feamster
et al. [17] and, more recently, Palmer et al. [51] demonstrated, how-
ever, that video streaming will also benefit from a partially reliable
transport. The idea that these prior work build on—some frame
losses do not substantially impair the visual quality of the video
stream—was also recently explored in BETA [32]. Unlike VOXEL,
BETA considers loss of only unreferenced B-Frames, uses TCP, and
implements only a subset of features of VOXEL.

Our goal is to systematically identifywhich frames can be dropped
a priori, i.e., in an offline process, while still delivering a high QoE
to end users. We now describe the key insights (highlighting simi-
larities and differences with relevant prior work) that underlie our
cross-layer approach for realizing this goal.

We selected 4 widely used videos from prior work, namely Big
Buck Bunny (BBB), Elephants Dream (ED), Sintel, and Tears of Steel
(ToS), for demonstrating the insights; Tab. 1 in §A provides a brief
characterization of the videos. To test whether they generalize to
other videos, we also used 10 public YouTube videos (𝑃1 - 𝑃10 in
Tab. 3 in §C) that were retrieved following an approach similar to
that of Yeo et al. [72]. We restrict our focus to only the 4 videos in
Tab. 1 (in §A) and 2 randomly selected videos from Tab. 3 (in §C) to
simplify the plots and explanations.We include a detailed discussion
of the analyses of all the YouTube videos in §C. For each video, we
selected a 5-minute section comprising 75, 4 s long segments. Each
video is transcoded at 13 different bitrates (Tab. 2 in §A) ranging
from the lowest quality (𝑄0) at 0.16Mbps to the highest quality
(𝑄12) at 10Mbps. The bitrates in the plots denote the bandwidths
required to stream the concerned segments, since we utilized the
segment sizes and not the video-wide average bitrate typically used
in ABR implementations.
1) Drop frames while still delivering a high QoE.

Typical video content can tolerate some dropped frames without
a significant impact onQoE [17, 32, 71]. Fig. 1a shows the percentage
of frame-drops that we can tolerate across different segments of
video at quality𝑄12, while still maintaining a segment average SSIM
score (or SSIM score, in short) of 0.99, i.e., excellent quality with
imperceptible impairment. In calculating the impact of frame-drops,
we assume that the I -Frame of each segment was delivered reliably,
i.e., without loss. The number of frames that can be dropped depends
to a large extent on the content of the video. In a scene with almost
no action or a title scene, for instance, it might suffice to drop all
but the I -Frame, and the video player could repeatedly show this
frame for the entire segment. Brooks et al. [6] substantiate that a
lossy image with higher encoding rate has a higher visual quality
(here, SSIM) than a lossless image at lower encoding. For each
of the six videos, at least half the segments can sustain a 10% to
20% loss in frames while still delivering an SSIM of 0.99. Of these
dropped frames an average of 12.6% for ToS, 22.8% for BBB, 27% for
ED, and 30% for Sintel are referenced frames. We, hence, drop 6%,
15%, 9.5%, and 24.2% of all referenced frames in ToS, BBB, ED, and
Sintel, respectively. This ability to drop referenced frames while
maintaining an SSIM of 0.99, thus, allows VOXEL to efficiently adapt
to challenging network conditions, better than all prior work.

Fig. 1b repeats the experiment at the lower quality𝑄9 at 4.3Mbps
(refer Tab. 2), demonstrating the interaction between encoded bi-
trate and frame-drop rate. The low bitrate of 𝑄9 lowers the SSIM
even in the absence of any loss: 85% of the BBB segments and 96%
of the ToS segments at𝑄9 have, per Fig. 1d, an SSIM score less than
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Figure 2: (a) Frames that can be dropped while guaranteeing a specific SSIM are distributed throughout the segments (b) It is inefficient to only
drop frames from the tail part of segments; and ABR algorithms can adjust video bitrates by also lowering SSIM scores instead of only switching
quality levels, as shown for two videos—(c) BBB, and (d) ToS.

0.99. Fig. 1c shows, however, that to improve the frame-drop toler-
ance at 𝑄9, we can target an SSIM score of 0.95, which still offers
good quality [57] with perceptible but not detrimental impairment.

This idea of tolerating frame losses was explored in [17] and
more recently in BETA. Our approach of identifying “importance” of
frames analyzes the dependencies between frames is more involved
(as we later show in §4.1) than relying on the relative positions of
frames (as in [17]) or simply tagging only unreferenced B-Frames as
“unimportant” [32]. Unlike VOXEL, prior work either use a complex
solution involving RTP/RTSP [17] or rely on TCP [32].
2) Reorder “unimportant” frames to segment’s tail.

Although we can drop a significant fraction of segments while
still guaranteeing a high-quality video stream (Fig. 1a), the frames
that may be dropped are typically distributed throughout the seg-
ment. While restricting consecutive frame-drops to the segment tail
increases the number of dropped reference frames to 51.75% in BBB
and 46% in ToS (“*/Tail” lines in Fig. 2b), the total number of frames
that can be dropped is much smaller than that with the newly pro-
posed frame-ranking system. This ability to identify more frames
that can be dropped with in minimal visual quality impairment is
crucial for tackling challenging network conditions.

Fig. 2a shows whether a frame at a given position across all 75
segments at 𝑄12 may be dropped while still delivering an SSIM
score of 0.99. A Y-axis value of 0.5 for some position implies that a
frame at that position can be dropped from half the video segments,
without reducing the SSIM by more than 0.01. The first frame in
the segment is generally the I -Frame and cannot be dropped, and
a 4 s segment at 24 fps has 96 frames. We observed unimportant
frames to be distributed throughout the segment in all videos, but
we omitted these plots due to space constraints.

The distribution of unimportant frames throughout the seg-
ment presents the non-trivial challenge of designing a frame-drop-
tolerant ABR algorithm. The challenge stems from conveying the
“importance” of different frames to the ABR algorithm. Some frames
are more important than others, and ABR algorithms should fo-
cus on downloading the important frames first. Suppose an ABR
algorithm terminates the download of a segment after a particular
time, say a deadline determined by when the segment needs to be
rendered on the screen. The sequential download of frames within
that segment, using a reliable transport, then implicitly assigns
each frame a priority based on the order in which they are decoded
for the segment. This default order must be altered and passed to
the client in order to prioritize important frames.

BETA uses a similar frame-ordering approach, albeit they signif-
icantly differ in two respects. BETA considers only unreferenced

B-Frames as “unimportant”, which offer little flexibility for adapting
the video quality in challenging network conditions (as we show
later in 5.2). To effect the reordering BETA modifies the video files,
whereas VOXEL only changes the manifest (refer 4.1). In a typical
scenario where the videos are streamed via a CDN, small manifest
updates are easier to synchronize than the comparatively large
video-file changes between servers (see also 7).
3) Fine-grained quality switching via frame-drops.

Optimizing for SSIMs does not alleviate the quantization prob-
lem: We have only a discrete, finite set of quality levels to cope
with the continuous variations in network throughput. Redesign-
ing ABR algorithms to optimize for QoE and exploit frame-drop
tolerance allows us to mitigate the quantization problem. Allowing
an ABR algorithm to specify the number of ordered frames that
can be dropped creates fine-grained virtual quality levels, which
may align closely with and quickly to the throughput variations.

Adding more (real) quality levels instead of virtual ones does not
address the quantization problem in the same fashion. The key dif-
ference with virtual quality levels is the ability to move the decision
boundary from segments to frame granularity. Traditional ABR
algorithms need to deliver a complete segment. If the network con-
ditions do not permit timely download of a segment, they can only
resort to re-downloading that entire segment at a different quality
level. The time spent on the already downloaded partial segment is
wasted, whereas with virtual quality levels, incomplete segments
are acceptable, thereby obviating segment retransmissions. With-
out the virtual quality levels, we observe in our experiments, for
instance, that the state-of-the-art ABR algorithm BOLA retrans-
mits near entire segment data for more than 25% of the segments,
particularly in small-playback-buffer, low-latency scenarios.

Romaniak et al. [57] show that perceptual-quality-impairing
artifacts caused by packet loss, or frame-drops, induce structural
changes that can be captured by SSIMs. Figs. 2c and 2d show such a
virtual quality in SSIM 𝑄12/0.99 (i.e., quality level 𝑄12, but with an
SSIM score of 0.99) between qualities 𝑄12 and 𝑄11 for the BBB and
ToS videos respectively.𝑄12/0.99 maintains an excellent SSIM score
of 0.99 while reducing the bitrate of all segments halfway from𝑄12
towards 𝑄11. Redesigning ABR algorithms for optimizing for QoE
and accounting for frame-drop tolerance fundamentally alters the
landscape of ABR algorithm design and offers several advantages
over virtually all current ABR algorithms.

BETA also pursues the idea of virtual quality levels, but only
drops unreferenced B-Frames. Besides, BETA only determines one
virtual quality threshold per quality level, whereas we (as we discuss
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later in §4.1) analyze the losses of all combinations of P- and B-
Frames. We can, therefore, determine the expected quality of a
segment at any point during the download and make fine-level
mid-segment quality adjustments. This greater flexibility allows us
to outperform all other streaming solutions (as we show in §5.2).

4 SYSTEM DESIGN
Streaming video using VOXEL is similar to traditional systems, but
with several important differences.

★ We prepare a video for streaming offline, by identifying the
“important” frames in each video segment. We order the frames
in the manifest to prioritize “important” frames (i.e., to download
them before the “unimportant” ones) and mark their influence, or
lack thereof, towards the QoE.

★ At the transport layer, we build on the QUIC extensions
from [51] and offer a partially reliable transport for exploiting
the insight that not all frames require reliable delivery.

★ At the application layer, we present a new class of ABR*
algorithms that use QoE metrics as the optimization utility and
allow the delivery of partial segments. ABR* exploits virtual quality
levels, obtained by dropping “unimportant” frames, to quickly adapt
to varying network conditions.

This section shows VOXEL’s backwards compatibility with ex-
isting clients and means for incremental deployment.

4.1 Preparing the Video Content
Similar to most streaming solutions, preparing video content for
streamingwithVOXEL starts with a transcoding phase.We transcode
the content into a number of different bitrates and slice them into
segments, which can be presented via the DASH manifest [46]. We
add an extra step or phase to prioritize frames within each seg-
ment. The prioritization helps a client to download the frames of
a segment in an order that, even if the download is prematurely
terminated, likely improves the QoE of the partially downloaded
segment. This reordering does not involve any change to the video
files, but only enriches the manifest by specifying the order in
which different byte-ranges of the video are downloaded.

The prioritization effort does not affect I -Frames as they have
the highest importance and are always downloaded first. For all
other frames, we investigate three different prioritization orders.
1○ Original order , in which we retain the frames in the same order
as generated by the (MPEG) encoder.2
2○ Order by grouping unreferenced frames, where we move
unreferenced frames, i.e., frames with no inbound references, to the
end of the segment. If a segment download terminates prematurely,
errors or losses in these tail-end frames will not affect other frames;
the visual quality of the segment experiences, hence, minimal degra-
dation. This order closely resembles BETA’s approach.
3○ Order by inbound references, in which we rank order frames
based on inbound references. We take both direct and transitive
references of a given frame into account for this rank ordering.
“Unimportant” frames in the tail end of the segment will be the
ones with fewer inbound references than those in the head end.

2MPEG encoders perform some limited frame re-ordering to ease decoding: They
neither analyze the transitive dependencies between frames nor the number of mac-
roblocks referenced by a frame.

When frame-drops occur at the tail, only a minimal number of other
frames will likely be affected than when frames are retained in the
other two orders.
Finding the best among the three orderings. For each order, we esti-
mate the implications of partial segments for QoE as follows. We
iterate over the “unimportant” (tail-end) frames in each segment
and calculate the QoEs (e.g., SSIMs) as a function of number of
dropped frames. The process results in a mapping from the num-
ber of bytes downloaded (calculated from frame sizes) under each
ordering to QoE scores. For each quality level 𝑄𝑛 we use the QoE
score of the pristine version of a segment at level 𝑄𝑛−1 as a lower
bound. If frame-drops lower the score below this bound, we simply
fetch the segment at quality 𝑄𝑛−1. We find, therefore, the smallest
number of bytes required at 𝑄𝑛 to achieve a QoE score higher than
the bound at 𝑄𝑛−1. The number of bytes required to satisfy a given
QoE threshold varies based on the ordering, as for a given percent-
age of frame-drops, in the tail-end, the number of affected frames
varies across the three orderings. Lastly, we pick the ordering with
the minimal number of bytes that achieves the required QoE score.
A client may fetch bytes beyond this threshold, if conditions permit.
Extending the manifest.We update the manifest with frame-level de-
tails (see Listing 1) based on the chosen ordering. We clearly demar-
cate the subset of data that requires reliable delivery (‘reliable’ and
‘unreliable’ byte-range attributes in Listing 1), and a client can fetch
the byte ranges via HTTP range requests. This type of request
renders it unnecessary to alter the video files. Lastly, we add the
mapping from bytes-fetched-at-a-quality-level to the QoE scores,
to assist an ABR algorithm in making better decisions. We show, for
instance, in the ‘ssims’ attribute in Listing 1 comma-separated tu-
ples, with each tuple containing a colon-delimited triplet: (a) A QoE
score, e.g., SSIM, and the number of (b) frames and (c) bytes of the
given segment that must be downloaded to achieve that QoE score.
For the videos in Tab. 1 in §A, the updates increase the manifest
size to approximately 16% of the size of an average 𝑄12 segment.
This size overhead can, however, be mitigated by using a better
encoding scheme for the metadata than the naïve, unoptimized ver-
sion we used in our proof-of-concept implementation. We can also
reduce any startup delays introduced by a large manifest simply
by incrementally downloading the manifest using the MPD update
feature of DASH [28].

Listing 1: A frame-level entry from VOXEL’s manifest.
<SegmentURL mediaRange="367500239-374182132"

ssims="0.988:49:4303546,...,0.999:93:5222995,1.0:95:5310048"

reliable="367500239-367501146,...,374125556-374125570"

unreliable="370076394-370171472,...,369318627-369389193"

reliableSize="1371846"/>

A size vs. compatibility tradeoff. A key benefit of the extended man-
ifest, despite its size, is that, unlike other prior work (e.g., BETA)
we do not require any modification to the video files on the server.
VOXEL-aware clients can exploit the additional metadata (frame-
level ordering) and download the frames in the best order. VOXEL-
unaware clients, in contrast, ignore the frame-level metadata and
simply download segments in the original or decoding order.

4.2 QUIC*: Enriching the Transport Layer
We designed a modified version of QUIC, referred to as QUIC*,
that supports not only (“vanilla”) QUIC’s reliable streams but also
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unreliable streams with optional retransmissions. The unreliable
streams of QUIC*, unlike UDP, are subject to the congestion (CUBIC)
and flow-control mechanisms of the QUIC connection. We borrow
some design principles from the QUIC extensions of Palmer et
al. [51], albeit our design significantly departs from theirs. While
we also introduce a new unreliable stream, for instance, we avoid a
separate control stream as in [51].
Interfacing transport and application layers.We use HTTP headers to
connect the transport and application layers. A client that wants to
open an unreliable stream, for instance, sends an HTTP GET request
and includes the custom x-voxel-unreliable header. A VOXEL-
aware server would open an unreliable stream to the client and
deliver the response over that stream. A VOXEL-unaware client, for
instance, will simply not use the custom header, and it will receive
the response via a reliable stream. A VOXEL-unaware server ignores
the header and opens reliable streams only.
Life cycle of a video session. A client begins the session by download-
ing the manifest, either in its entirety or incrementally over time.
With the details for fetching the next segment available, a VOXEL
client uses two sequential HTTP requests as follows. The first re-
quest fetches the I -Frame and headers of all frames (i.e., ‘reliable’
attribute in Listing 1) over a reliable stream. This second request
downloads the video data for a subset of the remaining frames (i.e.,
‘unreliable’ attribute in Listing 1) over an unreliable stream. This
subset is determined by the QoE score and the number of frames
required to achieve that score based on the ‘ssims’ attribute. As a
result, depending on network conditions, some packets, i.e., some
parts of frames, may be lost in transit. How to cope with the losses
that may introduce some QoE deterioration will be discussed next.
Enabling selective retransmissions.We follow a two-pronged strat-
egy for retransmissions: Given a target QoE score (e.g., SSIMs), we
can determine whether the loss will lower the QoE score below
the target value; we can, hence, avoid needless retransmissions.
We also exploit typical video-client behavior to opportunistically
retransmit lost data: Video clients typically do not download new
segments when the playback buffer is full. VOXEL use any such peri-
ods to re-request lost data on the unreliable stream via HTTP range
requests. We gather the loss information in the (QUIC) transport
layer and pass it up to the application layer that then generates
the corresponding HTTP request ranges. We stop any selective re-
transmissions, immediately, if conditions become unfavorable (e.g.,
buffer occupancy drops), to avoid introduce rebuffering issues. Yet,
we recover all losses in small buffer scenario and have a remaining
loss of only 0.9%, 1.5%, 1.8% for 2-, 3- and 7-segment long buffers.
Handling partially downloaded segments. Since we always fetch
the I -Frames and all frame headers reliably, when ending up with
partially downloaded segments, we have precise knowledge about
the losses, i.e., which frames were affected, and to what extent. We
use this information to mask the “holes” in the frames by simply
zero-padding the losses. The QoE score, e.g. SSIM, calculations are
performed on the decoded padded frames. With frame headers kept
intact and at the expected position in the file, decoding was no
issue. The decoder utilizes error-concealment techniques for zero
padded frames and only replaces a frame with the previous one if
said frame is missing entirely.
A quality vs. rebuffering tradeoff. Skipped frames indeed have im-
plications for end-user QoE. We systematically tradeoff the losses,

however, to avoid rebuffering, since the latter significantly degrades
user experience. Our experiments (in §5) show that VOXEL signifi-
cantly reduces rebuffering, particularly in scenarios with smaller
buffer sizes. Confirming, as of 2020, rebuffering to be the most
frustrating [41, 58], our user survey shows that an overwhelming
majority of participants prefer trading off buffering for quality.

4.3 ABR*: Enhancing the ABR Algorithm
VOXEL provides a framework for a new class of ABR algorithms
with the following key features.
Optimize forQoE.ABR algorithms such asMPC [73] and BOLA [63]
optimize a utility function often based on bitrate. Both algorithms al-
low, however, different utility functions. VOXEL uses a QoE-metric-
based utility. While we use SSIM as the QoE metric for most of
our evaluations, VOXEL is metric-agnostic, and we show that our
results generalize to other metrics such as VMAF and PSNR.
Support partial-segment downloads. Traditional ABR algorithms
choose from a limited set of bitrates. VOXEL allows partial seg-
ment downloads while ensuring frame-header integrity (§4.2) and
presents the respective QoE metrics for different download subsets
(Listing 1), thereby significantly increasing the available decision
space. This frame-header integrity enables decoding of segments
with missing referenced-frame data. VOXEL has, thereby, signifi-
cantly more freedom in dropping frames than prior work that only
allows unreferenced B-Frame drops [32].
Segment abandonment options. State-of-the-art ABR algorithms
(e.g., BOLA) support segment abandonment, albeit in a narrow
scope: They simply discard a high-bitrate segment download and
restart a low-bitrate download if a high risk of rebuffering is de-
tected. VOXEL extends this idea in a key way: We retain the partial
segment and move on to the next, even if, compared to recent
work, referenced frames are missing. This extension allows us to
download fewer bytes than other ABR algorithms (such as BOLA
and BETA) during periods with less-than-ideal network conditions.
Also, a partial high-bitrate segment might give better QoE than a
complete low-bitrate segment (refer §3).

To complete our VOXEL implementation, we designed ABR*, a
novel ABR algorithm based on BOLA. The decision to bootstrap
ABR* using BOLAwas manifold. BOLA already supports low-buffer
scenarios [62]. BOLA allows for a custom utility function by design,
and has only two tuning parameters 𝛾 and 𝑉 . Before streaming,
VOXEL automatically tunes 𝛾 and 𝑉 for the video’s bitrate ladder
characteristics following a calculation described in [63]. Further, the
complexity of choosing a segment’s quality is linear in the number
of qualities available, which is particularly useful since the partial
download option can significantly increase the number of qualities.
Finally, BOLA sees industry adoption and is already integrated in
the dash.js reference player [14].

We developed ABR* by extending BOLA-E, a variant of BOLA,
described in [62], with two updates. First, we changed the utility
function to use SSIMs and added the capability to select partial-
segment downloads. We refer to this intermediate step as BOLA-
SSIM. We then extended BOLA’s segment abandonment option to
keep a partial segment and move on to the next download. We refer
to this final step as ABR*.

While we based ABR* on BOLA, VOXEL will work with other
ABR algorithms, either novel or updated established algorithms. A
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Figure 3: When testing unreliable streams with “vanilla” (i.e., unmodified) ABR algorithms, MPC offers substantial improvements in rebuffering
ratios across all videos and buffer sizes. BOLA, in contrast, improves rebuffering ratios in some settings and degrades in some others. Due to
space constraints, we distribute the plot legends across neighboring plots, in this and all following similar figures.

few design aspects warrant, however, further attention. For example,
it is relatively simple to update MPC to use a QoE metric as the
utility function. MPC, however, searches the entire decision space
within a window, typically around five segments into the future.
Thus, the large decision space provided by VOXEL would require
further modifications to MPC to curb the search space.

5 EVALUATIONS
We now evaluate the efficacy of VOXEL by incrementally deploying
the different components and measuring the implications of such a
rollout for video-streaming performance.
Videos. Of the 14 videos we used earlier in §3, we restrict our at-
tention to 4 widely used videos (Tab. 1 in §A) in video-streaming
research, e.g., [22, 36, 38], for the evaluations. While VOXEL’s per-
formance varies across different videos, its relative performance
holds across all the videos. From each video, we chose five-minute
long subsections (75 segments) to get different and challenging
bitrate variations (see Fig.15 in §A). Following the encoding pro-
cedure outlined in [54], we produced “2x capped” VBR videos. We
used FFmpeg version 4.1.3, and transcoded 13 quality levels (𝑄0 with
0.16Mbps through 𝑄12 with 10Mbps), as per Tab. 2. Transcoding
was done using 2-pass encoding, preset slow and no custom encod-
ing settings. Unlike [54], we used 4 s segments, which are a good
balance between encoding quality and fast quality switching [37].
The resulting videos are, in percent of bytes, comprised of ≈15 %
I -Frames, ≈65 % P- and ≈20 % B-Frames. We describe the video files
and transcoding process in detail in §A.
Network testbed.We ran all experiments on a testbed consisting
of multiple sets of three bare-metal Linux machines running Linux
(Debian 9) with the 4.19 kernel. Each triplet emulates a one-hop
network—a server and client connected via an intermediate host (or
router). We shape the traffic flowing through the router using the
tc utility in Linux. Depending on the experiment, we either fix the
available bandwidth to accommodate our video stream and a certain
amount of competing traffic, or change the available bandwidth
on a per-second basis to mimic prerecorded network traces. As
the router constitutes a bottleneck in the internet, assuming that
not every video is cached on-site, we fixed the network queue
size to 1.25 × the bandwidth-delay product. To cover a cached-
video scenario, we ran the same experiments with a large, 750
packets long, network queue (see §B, due to space constraints). We
configured a 30ms delay on the router-to-client link, to emulate
typical “last mile” latencies.

Network traces. We used 5 different network traces: 3 LTE (4G)
traces from [69], a 3G trace collected in Norway from [56], and
a fixed-line broadband network trace from the FCC dataset [13].
We primarily focus on cellular networks for two reasons: (a) Video
traffic constitutes a substantial portion of IP traffic on mobile net-
works [8], and, most important, (b) they present the most challeng-
ing conditions for video streaming. We linearly offset the through-
put of the traces to ensure that the average ratematches the 10Mbps
bitrate of the highest video bitrate (i.e., 𝑄12). We set the network
queue to 32 packets accordingly. The adjustments leave the net-
work throughput variations intact, while ensuring that the ABR
algorithm has, on average, adequate bandwidth to stream at the
highest quality. The T-Mobile and Verizon LTE traces have high
throughput variations (with standard deviations between ≈9Mbps
and≈10Mbps), representing the less-than-ideal network conditions
under which we intend to evaluate VOXEL. The 3G, FCC and AT&T
traces have less variations, with standard deviations of 1.1Mbps,
2.35Mbps and 2.88Mbps, respectively.
ABR algorithms. In our evaluations we compare four ABR algo-
rithms against ABR*. They include BOLA [63] and MPC [73], two
state-of-the-art ABR algorithms, and, the more recent, BETA [32]
from the literature. We did not modify the ABR algorithms, with
the exception of providing BOLA and MPC with the exact segment
sizes, instead of average bitrates.3 The fourth is a naïve throughput-
based ABR algorithm (abbreviated as “Tput”) to identify what—the
transport or the ABR algorithm, or both—contributes the most, in
the various experiments, towards improving the streaming perfor-
mance. We also varied the playback buffer size across a wide range
of values from 4 s through 28 s. A new segment download can start
only if the buffer is not full. Most academic ABR algorithms use
buffers larger than 24 s (e.g., [33, 43, 63]), but small buffers are cru-
cial for supporting low-latency or live-streaming-like applications.
Experiments. An experiment involves streaming a video from a
server to a client via the router, under a fixed configuration. A config-
uration specifies the ABR algorithm, buffer size, video, and network
trace. Unless otherwise stated, we repeat each experiment 30 times
and report the aggregate statistics of the metrics gathered. For each
repetition we linearly shift the network trace by 𝑑/30 s, where 𝑑
is the trace duration in seconds, to investigate the interactions be-
tween throughput variations and variations in segment sizes of our
VBR-encoded videos (see Fig.15 in §A). To evaluate the performance
of each trial, we instrumented our video streaming software to ob-
tain segment-level timing information with packet-level precision.
3We implemented BETA from scratch, to the best of our ability, based on the details in
their paper [32], since it is not publicly available.
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Figure 4:When testing with unreliable streams “vanilla” MPC trades off average bitrates for lowering rebuffering ratios in all settings. BOLA,
however, is unable to balance such a tradeoff in all settings.
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Figure 5: ABR algorithms with QUIC* in realistic cross-traffic conditions, with a 20 Mbps cross-traffic, offer substantially lower bufRatios (a) and
(b) by trading off bitrates (c) and (d).

5.1 ABR Algorithms with QUIC*
Below we evaluate the implications of an incremental deployment
and, most importantly, ascertain the need for a cross-layer, co-
ordinated approach for optimizing video streaming. To this end,
we check the performance of an unmodified ABR algorithm with
QUIC*. An unmodified ABR algorithm will use QUIC* identically to
QUIC—using only reliable streams for transport. Hence, we added
minimal support for exploiting QUIC* by requesting the I -Frames
over reliable streams and all other frames over unreliable streams.
In-lab trials with network traces. In our evaluations with mo-
bile and fixed-line network traces, ABR algorithms encounter less
rebuffering when running atop QUIC* (in plots labeled “Q*”) than
QUIC (labeled “Q”). We define bufRatio as the total stall time divided
by the video duration during one video playback. The playback
buffer sizes used in this evaluation—from 24 s through 32 s, or 5
through 7 segments—are a representative lower bound of prior
work [39, 43, 63]. Fig. 3 shows the 90th-percentile and standard er-
ror of bufRatios for 30 trials of each ABR algorithm over both QUIC
and QUIC*, under different network conditions. QUIC* delivers, per
this figure, lower bufRatio than QUIC for all ABR algorithms; we
omit the plots for “Tput” in the interest of space. The results are
quite telling for the highly varying T-Mobile (Fig. 3a) and Verizon
(Fig. 3b) traces. The inferences hold for the AT&T, 3G, and FCC
traces (omitted to conserve space).

The 90th-percentile improvements in bufRatios for MPC is on av-
erage 71.7% larger than that for BOLA (9.2%), mainly becauseMPC’s
network-throughput prediction performs poorly for our traces. To
shed light on how QUIC* lowers the bufRatios we estimate the
average bitrates across all trials for each video under different con-
figurations. Unmodified ABR algorithms seem to trade off bitrates
(Fig. 4) for bufRatios; the tradeoffs are particularly conspicuous in
case of MPC with −24.7% but also across all configurations. Al-
though unmodified BOLA also experiences lower average bitrates

when running over QUIC*, the differences are much smaller (−4.1%)
than for MPC. Even in scenarios where BOLA is worse than QUIC*
(in Figs. 3c & 3d), we do not significantly degrade the bitrate.

The rare occasions where QUIC*’s performance is not on par
with QUIC emphasize the need for a cross-layer optimization, to
enable ABR algorithms to fully utilize the underlying partially
reliable transport, instead of opaquely sending frames unreliably
based on type.
In-lab trials with cross traffic. The trials with network traces
cannot capture the dynamic behavior of competing flows in a real
network. To test an ABR’s performance in the presence of reactive
flows, we generate cross-traffic using Harpoon [61] while streaming
video. Harpoon is a flow-level traffic generator that generates traffic
based on web workloads. It takes a number of clients,𝐶 , and servers,
𝑆 , as input and generates traffic by making the clients fetch files
of varying sizes at varying times from the servers. We vary 𝐶 to
generate varying amounts of cross traffic, averaging to T : 10Mbps,
15Mbps, and 20Mbps. The self-similar nature of the cross-traffic
does not represent a constant load: Rather, it has many high and
low bandwidth regions.

The link capacity in all scenarios was 20Mbps. We measure, for
each value of T , the 90th-percentile of bufRatios and average bi-
trates across five trials for the three ABRs as before. ABR algorithms
using QUIC* experience much less rebuffering than when using
QUIC (Fig. 5). Even though ABR algorithms experience a slight
reduction in average bitrates, the improvements in bufRatios are
substantial. MPC, again, shows with 82% more improvements than
BOLA (63.6%), but also experiences degradation in average bitrates
when using QUIC*.

The in-lab trials with network traces and against competing
flows show that even with utilizing unreliable streams, a superficial
ABR modification, we significantly lower rebuffering under varying
network conditions. Without a meticulous redesign, unsurprisingly,
ABR performance might suffer under some network conditions.
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Figure 6: bufRatio while streaming with BOLA, BETA, and VOXEL over different networks. VOXEL outperformed BOLA and BETA in practically
all scenarios. In T-Mobile (d), VOXEL was too aggressive overall, and we corrected this behavior by tuning a single bandwidth-safety parameter to
underestimate slightly the estimated throughput. We show the untuned VOXEL in Fig. 17c in §D.
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Figure 8: VOXEL outperforms BOLA/QUIC even in bitrates under
different network conditions.

5.2 ABR* with QUIC* (or VOXEL)
To fully exploit QUIC* and optimize video streaming without sacri-
ficing end-users’ QoEs, we upgraded BOLA to optimize for visual
quality and to exploit frame-drop tolerance (§3). The redesigned
ABR algorithm, ABR*, retains it’s primary goal of avoiding rebuffer-
ing. We evaluate VOXEL (ABR* with QUIC*) against a wide variety
of network conditions and playback buffer configurations. We also
included BETA into our trials, to demonstrate that VOXEL out-
performs BETA’s similar, but limited, feature-set. We do not show
MPC in these comparative evaluations due to its poor performance
against VOXEL in our highly varying network traces as well as
challenging cross-traffic scenarios.
In-lab trials with network traces. In our evaluations, under all
network conditions emulated using the different trace files, VOXEL
experienced either substantially low or virtually zero rebuffering.
We mainly focus, due to space constraints, on the plots for AT&T
(Fig. 6a), 3G (Fig. 6b), Verizon (Fig. 6c) and T-Mobile (Fig. 6d). We
observe similar results for FCC (Fig. 18a) in Appendix D. VOXEL
practically eliminates rebuffering against the state-of-the-art, BOLA,
and BETA under all buffer sizes ranging from 5 through 7 segments;
we only plot the largest buffer size in this range, where the 90th
improvement is 100%. If we compare the 7-segment buffers with the

smaller sizes, we observe an increase in bufRatio. Comparing the
bufRatio with the average bitrates in Fig. 8 reveals the reason: With
a large buffer, BOLA aggressively requests higher quality segments
but fails to deliver them in time, resulting in an overall increase in
bufRatio. These observations show that choosing the right quality
level is hard and large buffers cannot always prevent rebuffering.

To demonstrate thatVOXEL can even performwell in low-latency
or live-streaming-like scenarios, we experimented with very small
playback buffers. Per Fig. 6, even when the playback buffer is as
small as 1 segment (along with one “in-flight” segment), VOXEL
vastly outperforms today’s state-of-the-art streaming implementa-
tions in bufRatio by 74%. The rebuffering experienced when stream-
ing BBB over Verizon, in Fig. 7a, shows that VOXEL outperforms
BOLA/QUIC regardless of the choice of the QoE metric, demon-
strating that VOXEL is QoE-metric-agnostic.

We show the average bitrates (i.e., mean of average bitrates of
30 trials) of the video streams under different network conditions
in Fig. 8. In addition to streaming the videos with virtually low or
no rebuffering VOXEL sustains average bitrates that are at least on
par and in most cases significantly higher than that of the state-of-
the-art. Next, we focus on VOXEL’s performance with respect to
the SSIM metric.

First, we refer to the Verizon trace experiment, where VOXEL re-
duces rebuffering significantly by 96.3% (Fig. 6c). When comparing
the CDFs of all streamed segments’ SSIMs for both BOLA/QUIC
and VOXEL (see Fig. 7b), we observe that there is little difference
in the median SSIMs (solid lines). The rebuffering reduction was,
thus, no trade-off for a lower SSIM score. The shaded area in the
plot indicates the range between the best and worst SSIMs recorded
across all the 30 runs.

To illustrate VOXEL’s QoE-metric agnosticism, we repeated the
Verizon experiment, replacing SSIM with VMAF and PSNR. VOXEL
performs on par with BOLA in the lower VMAF score region, but
outperforms BOLA in the upper score region (Fig. 7c); VOXEL even
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Figure 9: SSIMs of selected videos while streaming with BOLA, BETA, and VOXEL over different networks. VOXEL is superior in SSIM while
reducing bufRatio (see Fig. 6). In (a), where neither protocol shows rebuffering, VOXEL better utilizes the available bandwidth, (b) performed best
in SSIM in with on par or better bufRatio, and traded SSIM only with BOLA in (c) and (d), for a vastly lower bufRatio as both BETA and BOLA.
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Figure 10: BOLA, BOLA-SSIM and VOXEL have 7.9%, 8.2% and 5.1%
mean bufRatio, respectively, when streaming BBB over 86 3G traces
with a 1-segment buffer. Pointing out the 90th and 95th, the bufRatio
difference mostly lies in the upper percentiles.

achieves perfect scores for several segments. The same holds for
bufRatio, in Fig. 7a: We show that VOXEL almost eliminates rebuffer-
ing with either SSIM , VMAF , or PSNR. We omit plotting PSNR, as it
shows very similar performance to VMAF and SSIM.

VOXEL achieves low rebuffering by exploiting the virtual quality
levels, obtained by “skipping”, i.e., not downloading, less important
frames. BETA relies, in contrast, on dropping a percentage of un-
referenced B-Frames (or b-Frames) to counter sudden fluctuations
in bandwidth [32]. VOXEL, thus, vastly increases the decision space
by considering P-Frames as well as referenced B-Frames. Our ex-
periments show that we had to drop frames in 9% of segments on
average. In 85% of those cases it was not sufficient to only drop
b-Frames; we also dropped 46% of all referenced frames, still re-
sulting in minimal SSIM degradation. Fig. 7d shows the percent
of data dropped, as a function of buffer size. With an increasing
playback buffer size, the amount of data dropped is reduced as the
large buffer likely absorbs the variations in network conditions and,
thus, makes it unnecessary to drop frames. The differences in the
data dropped for the same buffer size for different videos stems
from the differences in the scaling impact on SSIM scores. Said
differently, if the SSIM difference between two bitrate quality levels
is small, we will not insert SSIM quality steps (or virtual quality
levels) in between.

In the AT&T LTE network trace experiment (Fig. 9a), VOXEL
can even improve SSIMs. When we experimented with a two-
segment-long playback buffer, none of the three systems expe-
rienced any rebuffering (Fig. 6a). Yet, VOXEL’s distribution of SSIM
scores (Fig. 9a) is below (i.e., better than) BOLA and BETA, indicat-
ing that VOXEL used the available bandwidth more efficiently than
others. When streaming over the Verizon network, VOXEL outper-
forms BETA and BOLA in bufRatio for all videos (refer Fig. 6c for
the bufRatio of all four videos for all playback buffer sizes). BOLA
outperforms, however, VOXEL and BETA in terms of SSIM (refer
to ED in Fig. 9c). BETA and VOXEL, however, only seemingly lose

against BOLA, since this is part of the trade-off which significantly
reduces bufRatio. Overall, our evaluation shows that in most cases
VOXEL is clearly superior to BOLA as well as BETA.

One exception to the above performance of VOXEL is the T-
Mobile result in Fig. 6d. We found, however, that VOXEL was tuned
too aggressively in its quest to optimize for SSIMs. Such aggressive
tuning can lead to suboptimal decisions in network scenarios with
large bandwidth fluctuations such as the T-Mobile trace. When we
tuned VOXEL to be less aggressive, i.e., to slightly underestimate
the available throughput, we once again outperform BETA not only
in SSIM (Fig. 9d) but also in bufRatio (Fig. 6d). This tuning required
changing a single parameter, the bandwidth-safety factor, that is
applied to the estimated bandwidth. The results for an untuned
VOXEL can be found in the Appendix in Fig. 17d for SSIM and
Fig. 17c for bufRatio. This ability to balance the tradeoff between
visual quality and rebuffering can easily be leveraged dynamically
by a more advanced ABR algorithm.

Fig. 10 isolates the effect of the two updates to BOLA described
in §4. We evaluated BOLA, BOLA-SSIM, and VOXEL by streaming
BBB over 86 3G traces collected by Riiser et al. [56] using a 1-
segment buffer. The low average bandwidth of these 3G traces helps
to stress-test the ABR algorithms (Fig. 9b). BOLA-SSIM’s average
SSIM score is 0.02 higher than that of BOLA, but this increase
comes at the cost of 4% more rebuffering. VOXEL has, however, 35%
less rebuffering when compared with BOLA while also enjoying a
0.02 SSIM-score advantage. BOLA-SSIM obtains its SSIM advantage
by optimizing for SSIM and by using available bandwidth more
aggressively, and with more download options, than BOLA. VOXEL
reduces rebuffering through smart segment abandonments enabled
by QUIC*. The smart abandonments are particularly useful during
periods of low bandwidth. We repeated the experiments with a 7-
segment buffer and obtained similar results, with VOXEL obtaining
an even lower bufRatio. With the larger buffer, BOLA, BOLA-SSIM,
and VOXEL have mean bufRatios (SSIM scores) of 7.1% (0.865), 7.1%
(0.898), and 2.8% (0.895), respectively.
In-lab trials without partial reliability. To quantify the benefits
of partial reliability, we repeated the trials with network traces, and
kept all of VOXEL features intact except for unreliable streams, i.e.,
we enforced fully reliable transfers. With the Verizon trace (Fig. 18d
in §D) the bufRatio doubled without partial reliability across all
buffer sizes. Even when streaming under the more challenging T-
Mobile trace (§D, Fig. 18c), VOXEL outperforms a reliable streaming
system in all cases, except for ED with a 1-segment buffer.
In-lab trials with cross traffic. VOXEL outperforms the state-
of-the-art implementations even in the presence of a substantial
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Figure 12: VOXEL outperforms BOLA in (a) bufRatio and (b) bitrate
in the presence of 20 Mbps cross-traffic. Even when using a 1-segment
playback buffer, VOXEL offers low or near zero rebuffering rates.

volume of cross-traffic. Fig. 12a shows that VOXEL experiences vir-
tually no rebuffering even in the presence of an average of 20Mbps
of cross-traffic. As all streams in VOXEL are congestion-controlled,
we have no flow-fairness concerns. We omit results for fairness and
lower cross-traffic volumes due to space constraints.

The average bitrates sustained by VOXEL in Fig. 12b reveal that
we do not compromise the bitrates even while virtually getting rid
of rebuffering. The performance of VOXEL, particularly when using
very small playback buffers, attests to the benefit of the cross-layer
optimization for improving the status-quo in video streaming.
In-lab trials with synthetic network traces. To dissect VOXEL’s
performance improvements, we conducted controlled experiments
utilizing synthetic traces. We compared the SSIM progression of
streaming BBB on BOLA with VOXEL using (a) a constant through-
put of 10.5Mbps and (b) a step trace starting at 10.75Mbps and
dropping to 10.5Mbps after 70 s (see Fig. 11a). To avoid handicap-
ping BOLA, we use a playback buffer of 28 s. In the initial phase,
where both ABR algorithms are filling their buffer, VOXEL’s SSIM
never drops below 0.95 giving it a quality head start compared
to BOLA which drops down to 0.90. In steady-state, VOXEL out-
performs BOLA again with overall higher SSIMs throughout the
experiment. Both ABR algorithms run under the same stable condi-
tions, i.e., with constant available throughput, but VOXEL utilizes
the available resources more efficiently. Fig. 11b shows that VOXEL
obtains an SSIM score of 1.0 for 65% of the segments. BOLA, in
contrast, does not get any perfect scores.

We conduct a second experiment where we start at a marginally
higher 10.75Mbps and, after 70 s, drop down to 10.5Mbps, the same
throughput used for the first experiment. VOXEL has greater free-
dom in selecting a suitable quality and, unsurprisingly, outperforms
BOLA again. The finite set of quality levels BOLA can chose from
do not capture the network conditions well, and results in a per-
fect delivery of only 3% of the segments (Fig. 11c). In contrast,

VOXEL copes well with the network conditions, delivering 80% of
the segments with a perfect 1.0 SSIM score.
In-the-wild trials. We streamed video, inside of Europe, from a
server in a datacenter in France to a client behind a university WiFi
in Germany, for verifying the real-world performance of VOXEL.
We streamed videos throughout the day alternating between BOLA
and VOXEL using all four videos with a small 1-segment and a large
7-segment playback buffer. While BOLA and VOXEL achieve low re-
buffering for large buffers, VOXEL outperforms BOLA significantly
for small buffers (Fig. 11d). If we compare the SSIM scores in the
low-buffer experiment (Fig. 13), VOXEL performs comparably and,
thus, does not unnecessarily trade off rebuffering for visual quality.
To ensure similar conditions for both VOXEL and BOLA/QUIC, we
measured the clients’ available bandwidths during the experiment,
and they varied, on average, by less than 200 Kbps.

5.3 Real User Survey
We conducted a real user study with 54 participants recruited from
different universities. We used one-minute-long video clips ex-
tracted from our in-lab experiments; we chose videos streamed
in challenging network conditions (e.g., scenarios where network
throughput was as low as 0.3Mbps). Of the 54 study participants
84% preferred VOXEL to BOLA, i.e., they would rather watch the
videos streamed using the former than the latter. We asked users if
they would have stopped watching the clips: 31% of users indicated
that they would have stopped the BOLA streams, if they were per-
mitted, while only 10% said they have stopped the VOXEL streams.
If the short videos were representative of what to expect in longer
videos, 74% indicated that they would not watch the BOLA streams
compared to 36.7% for VOXEL.

The preference for VOXEL is also reflected in the MOS values
given for the questions along four dimensions (Fig. 14). The play-
back fluidity was important and rated 1.7 points higher for VOXEL.
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Figure 14: Mean Opinion Scores along 4 dimensions: Clarity (i.e.,
visual quality), glitches (i.e., noticeable artifacts), fluidity (i.e., re-
buffering) and overall viewing experience.

This fluidity is traded for a slightly lower score in terms visual qual-
ity, i.e., noted here as clarity −0.49 and glitches −0.19, though, the
overall experience was preferred with a 0.77 points higher score.

6 RELATEDWORK
Almost all prior work onABR algorithms (e.g., [24, 33, 39, 43, 64, 73])
leave the underlying transport—typically, TCP—intact. Bhat et al.,
show that porting such ABR algorithms to QUIC does not suffice [4].

Prior work also looked at “tweaking” or “tuning” TCP for video
streaming. TCP variants such as TCP-RTM [40] and TL-TCP [47]
either ignore retransmissions or avoid retransmitting data that have
already missed the deadline. Both complicate application design,
making deployment impractical, if not impossible. Brosh et al. [7]
suggest optimizations to make TCP more friendly for delivering
real-time media. In a similar vein, Goel et al. [20] tune TCP’s send
buffer for mitigating delays. These optimizations will be even more
beneficial when applied selectively—to only the portion of data that
requires reliability. McQuistin et al. [45] propose a TCP variant that
uses retransmissions to deliver new data. This idea alleviates some
but not all of the overhead.

There is work but seldomly a full system on dropping frames.
Yahia et al. [71] propose video delivery schemes that exploit HTTP/2
mechanisms to drop frames during low-latency live streaming. They
use, however, only single-bitrate videos without ABR algorithms.
Stewart et al. [55] present PR-SCTP, a partial reliability extension
to SCTP. It allows to specify, on a per-message basis, if a retrans-
mission should take place. As a transport protocol, it does not have
a notion of video frames, and thus, would require an application
on top of it to determine which frames can be dropped.

Feamster et al. [17] explore the effect of selective reliability for
streaming video via RTP, necessitating substantial changes to the
network stack. VOXEL, in contrast, requires minimal changes and
can be deployed incrementally. Fouladi et al. [18] designed Salsify,
a system for video conferencing, that adjusts the encoding quality
per video frame. This approach is less suitable for video-on-demand
as it would require re-encoding the video for each and every view.
VOXEL introduces a one-time computational overhead, a priori
when enriching the manifest, regardless of how many times the
video is streamed.

BETA from Cyriac et al. [32] is most relevant to this work. BETA,
however, uses TCP and, thus, does not allow for imperfect transmis-
sions. Their optimization, instead, stems primarily from dropping
unreferenced B-Frames; the videos in Tab. 1 in §A, for instance,
contain more than 30% P-Frames, which constitute at least 56%
of video data—much more than B-Frames. In challenging network

conditions (e.g., cellular networks), the inability to drop referenced
frames (even if they do not introduce perceivable issues) hurts
their performance. On average, VOXEL dropped frames in 9% of
segments. In 85% of those cases it was not sufficient to only drop
b-Frames, but 46% of all referenced frames had to be dropped as
well. Unlike VOXEL, BETA does not analyze the QoE implications
of losses of different type and number of frames. Their single virtual
quality level does not allow them to adjust the segment quality at
any instant of time, when conditions deteriorate. If the throughput
does not suffice, they either accept a segment unaware of its visual
quality, or, in the worst case, simply discard the data and fetch the
same segment at the lowest quality.

7 CONCLUDING REMARKS
We designed and implemented VOXEL, a cross-layer video stream-
ing optimization, and showed that in our evaluations it significantly
outperforms the state-of-the-art. VOXEL’s design builds upon the
insights that (i) videos can tolerate some drops without significant
impact on QoE—motivating us to use a partially reliable transport
protocol, (ii) we can identify less “important” frames—motivating
us to alter the frame sequence in the manifest, (iii) we can lever-
age QoE utilities—motivating us to introduce virtual quality levels
through frame-drops. Skipping a non-trivial amount of streaming
data while still delivering high quality video has huge monetary
implications for both CDNs and content providers—a novel use
case for VOXEL that we leave to future work.
Managing the overheads. VOXEL’s frame-prioritization computation
introduces some overheads: In our unoptimized implementation, en-
riching the manifest incurred at most 5-times higher cost than that
of encoding a video. Beyond simply optimizing the code, the content
provider can also drop a few encoding levels and thereby reduce the
storage costs. The computation only changes the manifest; video
files remain as is. Hence, in a typical video streaming scenario via a
distributed platform (e.g., CDN), this manifest-only update can be
deferred (until later when the provider has empirical observations
on streaming conditions) and easily synchronized between servers
(owing to their small size). Lastly, it is a one-time computation, i.e.,
once enriched the manifest can be reused indefinitely.
On being QoE-metric agnostic. VOXEL opens up a new design space
that is not yet fully supported by current quality metrics. Since
SSIM may not be the preferred metric to assess the visual quality of
video, we designed VOXEL to be QoE-metric agnostic. We show, in
Fig. 7a, relatively good rebuffering performance when using VMAF
or PSNR [25, 26]—other widely used QoE metrics in the literature.
We, thus, invite the community to consider evaluating new metrics
that can accurately measure the QoE impact of imperfect segments.

We have released our implementation as an open-source arti-
fact to motivate exploration of other ABR designs and also foster
reproducible research (refer §E for details). We hope the design
and evaluation of VOXEL serves as a “call to arms” for the video-
streaming community to investigate this optimization landscape.
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Table 1: Overview of evaluation videos from prior work.

Video Genre Std. dev. Range
(Mbps) (Segments)

Big Buck Bunny (BBB) Comedy 3.77 1–75
Elephants Dream (ED) Sci-Fi 5.6 39–113

Sintel Fantasy 7.5 148–222
Tears of Steel (ToS) Sci-Fi 3.52 1–75
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Figure 15: Variations in segment sizes across a subset of the 13
available quality levels for two selected videos.

A VIDEOS FROM PRIORWORK
For both demonstrating the key insights and evaluating the design
of VOXEL, we chose 4 videos widely used in video-streaming re-
search (see Tab. 1), namely, Big Buck Bunny (BBB), Elephants Dream
(ED), Sintel, and Tears of Steel (ToS). Since the actual videos are
quite long in duration—ranging from ≈10.5min to ≈15.75min—we
chose five minutes (75 segments) from each video, to obtain video
clips with different, challenging bitrate variations (shown in Tab. 1).
We transcoded the videos using FFmpeg version 4.1.3, at 13 qual-
ity levels (𝑄0 with 0.16Mbps through 𝑄12 with 10Mbps), as per
Tab. 2. As ED was not available in 4K, 𝑄11 and 𝑄12 were, thus,
encoded as 1080 p. The levels are based on common 16x9 aspect
ratio resolutions, and bitrates from a combination of the “bitrate
ladders” of YouTube obtained via youtube-dl [77], and Netflix [48].
These capped VBR videos have a peak bitrate of at most 200% the
average bitrate (see Fig. 15) and 24 fps. The clips exhibit (in Fig. 15),
depending on the content, vastly different bitrate variations across
the video segments. This encoding increases the visual quality of
the videos, since it uses more bits (i.e., incurs a high bitrate) in
segments where they are most needed.

Table 2: Quality levels of encoded videos.

Resolution Quality Level Avg. Bitrate Total Size
(Mbps) (MB)

144 p 𝑄0 0.16 5.8
240 p {𝑄1,𝑄2 } {0.23, 0.37} {8.5, 14}
360 p {𝑄3,𝑄4 } {0.56, 0.75} {21, 27}
480 p {𝑄5,𝑄6 } {1.05, 1.75} {38, 63}
720 p {𝑄7,𝑄8 } {2.35, 3} {84, 108}
1080 p {𝑄9,𝑄10 } {4.3, 5.8} {154, 207}
1440 p 𝑄11 7.4 264
2160 p 𝑄12 10 357

B LONG NETWORK QUEUES
We ran network trace experiments with a 750-packets-long queue
(see Fig. 16), to acknowledge typical commercial-LTE behavior for
popular on-site-cached content. Video content, cached on premise

of an LTE provider, will traverse an LTE network path with typically
very long network queues. The 1-segment buffer is, again, the
largest hurdle but VOXEL still has a slight edge over BOLA, even
with the more challenging T-Mobile trace. Larger buffer sizes, and
the less challenging Verizon trace widen the gap between the two.
Looking at larger buffers and Verizon in Fig. 16b, we do see VOXEL
occasionally performingworse than BOLA. This can be attributed to
the QUIC version ofVOXEL, which relies on CUBIC as its congestion
control (CC). Large network queues pose a challenge for loss-based
CC, thus, in future work, VOXEL should be evaluated with a delay
based CC.
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Figure 16: bufRatios for a 750-packets-long network queue.

C PUBLIC YOUTUBE VIDEOS
To confirmwhether the insights in §3 hold for a broader spectrum of
videos, and not only for the, although, widely used videos in Tab. 1,
we analyzed a set of 10 publicly available videos from Youtube
(see Tab. 3). In Fig. 19, we present the analyses of some of the videos
that were not already presented in §3. For readability, we omit 𝑃3
and 𝑃8, as the results from these do not offer any additional insights.

Our observations concerning frame-drop tolerance for most of
these videos, were similar to those drawn from the four videos from
prior work (in Tab. 1). There were, however, two exceptions: 𝑃9 and
𝑃10. For the rest, at quality level𝑄12 half of the segments can tolerate
at least 10% frame-drops while maintaining an SSIM score of 0.99
or higher. In case of 𝑃10, only 4% segments can tolerate 10% frame-
drops or more, while for 𝑃9, we can drop 14% of frames from all
segments. At a quality level lower than 𝑄12, it is nearly impossible
to tolerate frame-drops when streaming 𝑃10, even when targeting
an SSIM score <0.99 (Fig. 19c). At 𝑄9 with a target SSIM score of
0.95, for instance, only 18% of the segments of 𝑃10 can tolerate a
frame-drop. 𝑃9, on the other hand, can tolerate 80% frame-drops
for at least half of the segments.

Table 3: Overview of public YouTube videos used to generalize our
insights to a diverse set ot Internet videos.

Channel Category Std. dev. Range
(Mbps) (Segments)

Brooklyn and Bailey (𝑃1) Beauty 2.2 1–55
CollegeHumor (𝑃2) Comedy 1.88 56–131
Dude Perfect (𝑃3) Sports 2.52 5–80
FaZe Adapt (𝑃4) Gaming 2.05 2–77

Gordon Ramsay (𝑃5) Cooking 1.76 1–74
Katy Perry (𝑃6) Music 4.35 23–98

Tana Mongeau (𝑃7) Entertainment 2.03 33–108
The Young Turks (𝑃8) Politics 1.6 4–79
Unbox Therapy (𝑃9) Tech 1.7 1–67

CHARI Yosakoi ch (𝑃10) Entertainment 1.94 3–78
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Figure 17: Average bitrates while streaming with VOXEL over (a) 3G and (b) AT&T. A too aggressively tuned VOXEL losing against BETA in
bufRatio in (c) while outperforming BETA in SSIM (d).
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Figure 18: bufRatio and average bitrates while streaming with VOXEL utilizing the FCC trace (a-b), and a bufRatio comparison between VOXEL
without partial reliability enabled, denoted as "VOXEL rel", and VOXEL itself, over (c) T-Mobile and (d) Verizon.
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Figure 19: The insights from §3 hold true for a diverse video set. (a) A significant number of frame-drops can be tolerated while guaranteeing an
SSIM of 0.99; The frame-drop tolerance (b) diminishes when reducing the quality, but (c) improves when lowering the target SSIM from 0.99 to 0.95.

The striking difference in frame-drop tolerances between 𝑃9 and
𝑃10, and also between these two videos and the rest can partly be
explained by looking at the content of these two video clips. 𝑃10 is
a Japanese street-dance performance with roughly 50 performers;
the video involves many subjects and a lot of “changes” (or dance
movements) captured across the different frames. In addition, the
video clip has no “cuts” or scene changes. The combination of all
these factors implies that regardless of where frame-drops occurs in
a segment, the resulting (decoding) errors propagate to the end of
the segment. 𝑃9, in contrast, is an “unboxing” video, which mostly
features a presenter standing against a gray background, or involves
a top-down view of his hands against a white table (or background).
From one frame to another, the video shows little movement, i.e.,
changes, if any, are constrained to a relatively few macroblocks.
As a result, the video can tolerate a substantially large number of
frame-drops without significantly degrading the SSIM score.

D VOXEL
VOXEL is able to almost completely remove rebuffering for the
AT&T trace (recall Fig. 6a in the main paper), while still delivering
comparable or higher average bitrates (Fig. 17b), even with small
buffers. For 3G (recall bufRatio in Fig. 6b) and bitrates in Fig. 17a,
and FCC (Figs. 18a, 18b) VOXEL is not able to remove rebuffering

entirely, but still delivers comparable or better performance than
the state-of-the-art. To determine the influence of partial reliability
on the overall performance of VOXEL, we ran the same trace experi-
ments with VOXEL on T-Mobile (Fig. 18c) and Verizon (Fig. 18d) but
disabled unreliable streams. Enabling partial reliability significantly
reduces the bufRatio in all but one cases.

E ARTIFACTS
The source code of the VOXEL implementations is available at
https://github.com/derbroti/VOXEL and includes:

• the network traces used in the experiments,
• scripts to build the system and perform a video stream,
• a README on how to use the provided scripts.

To compact the repository it holds only the modified files, the
remaining Chromium code base is retrieved during the initial setup.
The system is headless, thus, the streamed video is not rendered
but it and extensive logging is written to disk.

The video files used in the experiments and the extended man-
ifests required to use VOXEL’s features are available at https://
nextcloud.mpi-inf.mpg.de/index.php/s/e8e3C977wg2Kkty.

Each video folder4 contains the video files, encoded in thirteen
quality levels, and the extended manifest (*.mpd).
4The Chromium server requires the served files to include an HTTP-response-header.
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