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Abstract—Internet interconnections are the means by which
networks exchange traffic between one another. These intercon-
nections are typically established in facilities that have known
geographic locations, and are owned and operated by so-called
colocation and interconnection services providers (e.g., Equinix,
CoreSite, and EdgeConneX). These previously under-studied
colocation facilities and the critical role they play in solving the
notoriously difficult problem of obtaining a comprehensive view
of the structure and evolution of the interconnections in today’s
Internet are the focus of this paper.

We present mi?>, a new approach for mapping Internet
interconnections inside a given colocation facility. || We infer
the existence of interconnections from localized traceroutes and
use the Belief Propagation algorithm on a specially defined
Markov Random Field graphical model to geolocate them to
a target colocation facility We evaluate mi® by applying it
initially to a small set of US-based colocation facilities. In
the process, we compare our results against those obtained by
two recently developed related techniques and discuss observed
discrepancies that derive from how the different techniques
determine the ownership of border routers. As part of our
validation approach, we also identify drastic changes in today’s
Internet interconnection ecosystem (e.g., new infrastructures in
the form of “cloud exchanges” that offer new types of intercon-
nections called ‘“virtual private interconnections”), and discuss
their wide-ranging implications for obtaining an accurate and
comprehensive map of the Internet’s interconnection fabric.

Index Terms—Internet Topology, Colocation Facility, Intercon-
nection Services, Geography

I. INTRODUCTION

Interconnections are the “glue" that ensures that the Internet
can function as a network of networks or autonomous systems
(AS). Interconnections refer to the physical connectivity be-
tween border routers of different networks that allow these
networks to connect with each other and exchange traffic.
Two networks, for instance, might establish a “private” inter-
connection (or private peering) by connecting two of their
border routers, one from each network, through a dedicated
physical link (or cross-connect, also known as private network
interconnection or PNI). To facilitate such private peerings, a
colocation facility (or datacenter) and interconnection services
provider operates colocation facilities wherein networks rent

! An open-source prototype of mi? is available at our project website located
at https://onrg.gitlab.io/projects/mii

space to deploy their routers. The facilit provider may then
sell cross-connects to allow any two of its customers to privately
exchange traffic. Alternatively, networks may also establish
public peerings by deploying border routers in a colocation
facility that either houses an Internet exchange point (IXP)
or is part of a geographically distributed IXP and connecting
them (for a price) to ports on a switch managed by the IXP. In
contrast to cross-connects, network traffic in public peerings
is exchanged over a shared switching fabric. The notion of
“mapping” these interconnections—both private and public—
refers to first inferring their existence and type, and then
geolocating (or pinning) them to the target colocation facility.
Identifying the number, types and locations of intercon-
nections between pairs of ASes is a critical first step in
understanding the structure and evolving nature of the Internet’s
connectivity fabric. For one, important changes in the way
networks interconnect with one another in today’s Internet can,
in general, be best observed and identified in individual colo-
cation facilities where these interconnections are established
and utilized. One recent example of such an observation has
been the emergence of new switching infrastructure (termed
“cloud exchanges”) that a number of the large colo providers
(e.g., Equinix and CoreSite) started to operate in some of
their main metro locations [1f], [2]. Moreover, visible signs
of this new Internet infrastructure are new interconnection
service offerings in the form of so-called “virtual private
interconnections” (VPIs) [2], AWS Direct Connect [3], and
Google Cloud Interconnect [4]. VPIs enrich the existing options
for networks to interconnect with one another and are specially
designed to help enterprises reap the benefits of the growing
number of offered cloud services. They also make the task
of determining how a given network connects to the rest of
the Internet more difficult as they enable networks to deploy
“hybrid” connectivity options; that is, restrict cloud-related
traffic to VPISs, utilize PNIs for other “value-added” traffic, and
send all other traffic through an IXP via public peerings.
Importantly, the emergence of such hybrid connectivity
significantly complicates the study of inter-domain networking
problems such as critical Internet infrastructure protection [J5]
Internet service failures [6]], routing issues [7], colo-centric

’In this paper, we use the terms colocation facility, facility, and colo
interchangeably.



selection of traffic relays for network overlays [8]], detecting
peering infrastructure outages [9l], or Internet inter-domain
congestion problems (e.g., see [L0] and references therein).

Systematically mapping the interconnections in today’s
Internet is, however, a well-known difficult problem, and
despite a flurry of different efforts reported in the recent
literature on this topic (e.g., see [11], [12], [13], [14]), a
complete (or comprehensive) solution to this mapping problem
has eluded researchers to date. Among the many challenges
that have remained largely unsolved and require new ideas
are (i) the design of reliable techniques for inferring existing
interconnections as well as mapping or pinning them to the
colocation facility where they are utilized, (ii) the development
of methods that are not network-specific but are applicable
across the wide spectrum of networks that make up today’s
Internet, (iii) a basic understanding of what constitutes a “good”
collection of traceroute data for mapping a targeted set of
interconnections (e.g., between two ASes, or in a given city or
colo), and (iv) a viable approach for validation for this problem
space that is notorious for its dearth of ground truth.

In this paper, we present mi?, a new methodology and tool for
systematically mapping (both inferring and pinning) all (private
and public) interconnections in a target colo. mi? relies on the
information derived from carefully designed traceroute-based
measurement campaigns to first infer the likely interconnections
at a facility, and then pin them to the inside or outside of that
facility. mi? is a bottom-up technique: It maps the Internet’s
interconnections one colo at a time. Such an approach to
mapping interconnections has a number of practical benefits.
For one, it clearly defines the required probing campaign, and it
limits the scope of all possible interconnections to the networks
native to the target facility. Moreover, the problem of pinning
a discovered interconnection reduces to one of mapping it to
the inside or outside of that facility. Finally, by enabling the
application of our technique to any of the thousands of colos
around the world, mi? is well-suited to discover major changes
in the Internet’s interconnection fabric in the very locations
where these interconnections are offered and established. For
the purpose of this paper, we illustrate mi?’s capabilities by
applying it to three CoreSite colos in Los Angeles, Chicago, and
Miami, respectively, and evaluate and discuss its accuracy and
coverage in comparison to two existing related techniques [13]],
[15] that consider relevant sub-problems of our overall mapping
problem.

In the process of designing, implementing, and evaluating
mi2, we contribute to the existing literature on mapping
interconnections in the following four ways.

® Describing a reliable method for inferring interconnections.
We begin with an in-depth analysis of the router-level view
derived from purposefully designed traceroute campaigns (i.e.,
collection of different traceroutes), and propose a combination
of well-established and new heuristics for identifying the
owner AS of individual routers to reliably infer all observed
interconnections in a given campaign. In the process, we
also account for the inaccuracies and ambiguities inherent in
counting interconnections from traceroute-based measurements.

e Leveraging a probabilistic approach for pinning inferred

interconnections that limits the impact of erroneous ge-
olocation information.  The main reason for utilizing a
probabilistic method for pinning inferred interconnections to
the inside (or outside) of a given colo facility is to avoid
the propagation of any potential geolocation errors during
the pinning process. To this end, we first identify a set of
observed interfaces, called anchors, whose locations (i.e., either
inside or outside the facility) can be reliably determined.
Leveraging domain knowledge, we establish a few heuristics
to assess the likelihood that two (or more) observed interfaces
in our campaigns are “co-present” in the same facility. We
then leverage a purposefully constructed Markov Random
Field (MRF) graphical model that encodes the “co-presence’
relationship information among different sets of interfaces. The
resulting graphical model along with the locations of anchors
are used as input to a probabilistic inference technique known
as Belief Propagation. This technique determines the probability
that individual interfaces can be pinned to the inside (or outside)
of the target facility.

s

e Demonstrating the benefits of extensive validation efforts
Jor a problem that is notorious for a dearth of ground
truth. We report on our efforts to validate the output of mi?
despite a scarcity of ground truth that stems from a general
unwillingness of the colo operators to share interconnectivity
details at their facilities. We use a number of publicly available
and diverse sources of information to perform “spot checks”,
which reveal that our results are very accurate. With respect
to evaluating mi2’s coverage (i.e., its ability to infer and pin
all interconnections at a target facility), we combed through
previously ignored sources of information. In particular, we
looked at reports that publicly traded colo companies such as
CoreSite are required to file with the SEC in the US to inform
their shareholders and financial analystsE]

e Advancing a community-wide effort to support repro-
ducible research in the area of mapping today’s interconnec-
tions.  An attractive feature of our open-source mi? prototype
is that it can be readily enhanced by third-party researchers.
For example, in the case of the described probabilistic pin-
ning approach, if better co-presence relationship information
becomes available, either by means of new heuristics or an
improved understanding of existing heuristics, it can be readily
leveraged to improve an existing encoding of co-presence
relationships among different sets of interfaces. Furthermore,
mi? enables, by being open-source, reproducible networking
research and encourages comparisons with alternative tools as
a way to advance our understanding of mapping the Internet’s
interconnections. Given the problem space’s scarcity of ground
truth, it is mainly through direct comparisons with other
applicable tools that it will be possible to uncover the elusive
ground truth.

A tool like mi? might also help a service provider such as
a CDN to decide in which colo to install its servers and from
which in-colo networks to buy transit from. For example, the
CDN can estimate in advance how much traffic it expects to
serve to the clients of each of the networks present in the colo.

3For a prior use of similar data (i.e., U.S. SEC Form 10-K filings) in the
context of mapping ASes to their organizations, see [16].



Since no single network may host more than a small fraction of
the clients, it may not be feasible or cost effective for the CDN
to peer directly with all of the networks at the colo. Instead,
the CDN can use mi? to identify a smaller set of networks to
peer with at the colo, with the identified networks containing
the bulk of the clients. Note that the selected networks may or
may not be the same networks that host the largest number of
clients. Because these mi2-inferred “one-hop-away” peerings
occur between networks within the same colo, the CDN can
expect that the performance will be comparable with using
direct peering with these networks.

Roadmap. We review related work in Section [lI| and focus,
in particular, on the key differences between our approach and
previously considered techniques. While Section [[1I| provides
an overview of our approach, Section and |V| describe our
interconnections inference and pinning techniques, respectively.
Our evaluation and validation efforts are presented in Sections
[VI] and [VII} respectively. Section [VIII| concludes with a
discussion of remaining challenges.

II. RELATED WORK

There has been a large body of research on the Internet’s AS-
level topology, using a graph-theoretic model where nodes are
ASes and edges between nodes are logical entities indicating
that the involved ASes interconnect with one another in one
or more locations around the world (see [17], [18], [19]
and references therein). The task, however, of systematically
mapping the physical realizations of AS interconnections to
specific locations has remained a challenging problem. The
reasons are partly the scale, heterogeneity, and distributed
nature of the Internet [20], [21], partly the absence of adequate
mapping tools and techniques [22], and partly the significant
difficulties that detailed validation efforts face in view of a
general lack of publicly available ground truth data [23], [24].

Recent work has addressed only certain aspects of the overall
problem. One such aspect concerns the Internet’s colocation
facilities themselves [8]]. Another aspect is how individual
networks, especially the large content providers or CDNs
connect to the rest of the Internet [25]], [26], [27]. Yet another
aspect deals with the special case of mapping IXP-related
public interconnections and has motivated past efforts such
as [28], [29], [300, [31], [11], [32]. However, due to their
IXP-specific nature, these methods and related tools such as
tralXroute [33]] are not applicable to infer and exhaustively
enumerate the private interconnections at a colo.

A number of recent studies [12], [13]], [14] have focused
exclusively on the task of inferring interconnections from
traceroute data where the key challenge is to reliably determine
the owner AS for the IP addresses at each hop of a traceroute
and identify the relevant interconnection (i.e., inter-AS IP-
level segment). In addressing this challenge, one of these
studies (i.e., bdrmap [12l]) recognizes the unreliability of
earlier IP-to-AS mapping techniques [34]], [35], [36], [37],
[38]] and leverages various IP alias resolution methods [39],
[400, [410, [42]], [43], [44], [45] to design a tool for inferring
all interconnections between a given AS and its neighboring
ASes. bdrmap relies on carefully crafted, targeted traceroute

measurements—Ilaunched from various vantage points inside
the AS towards its neighbors—and employs a set of structured
heuristics to identify network boundaries at the router-level
(i.e., border routers). Another of these studies [13] presents
MAP-IT, a tool that attempts to exhaustively enumerate, from a
given set of traceroute measurements, exact interface addresses
on both sides of any interconnection (together with the specific
pair of ASes involved) that is traversed by any of the traceroute
probes. The latest effort on this inference problem is described
in [[14], where the authors synthesize bdrmap and MAP-IT to
design bdrmap-IT, a new tool that infers both the AS owner of
all routers and all the inter-domain links in a given traceroute
dataset.

Neither of the studies [12]], [[13], [14] have been designed
for the purpose of mapping interconnections in the sense
of mi?, e.g., they do not address the problem of pinning.
As tools for inferring interconnections from traceroute data,
however, they have been evaluated and shown to perform well
in certain settings. Nevertheless, real-world complications (e.g.,
unresponsive routers and lack of proper vantage points) will
necessitate more substantial evaluation efforts to provide the
sort of completeness, accuracy, and correctness properties that
are required before the tools’ results can be trusted and used
in practice. For example, while bdrmap offers an attractive
method for identifying an AS’s border routers, its broader
applicability remains questionable without further information
about the extent of the required traceroute campaign and the
quality of bdrmap’s output as a function of the number and
locations of available vantage points inside the target AS.
Specifically, to apply bdrmap to infer all interconnections at
a given colo (i.e., the inference-only part of mi?’s inference
and pinning task) would require one or more vantage points in
each of the colo’s tenant ASes. This is clearly an unreasonable
requirement, especially because a majority of colo tenants
are typically small networks and provide no vantage points
for launching the required traceroutes. Similarly, although
MAP-IT’s ability to infer interconnections in an arbitrary set
of traceroute measurements is appealing, a feature of real-
world traceroutes is that some are more useful with respect to
inferring interconnections than others. Thus, without a means
to assign any level of confidence to its output (i.e., inferred
interconnections) as a function of certain properties of the
input (i.e., requirements on the considered set of traceroutes),
MAP-IT’s largely data-driven approach is of limited practical
value. Also, since the initial version of MAP-IT does not
leverage a router-level view of the observed interfaces (as, for
example, mi? and bdrmap do), the tool’s output suffers from
readily observable inconsistencies (see, for example, Section
VII).

Prior work has also relied on commonly used methods—
reverse DNS lookup, IP geolocation, and delay-based
techniques—for geolocating or pinning inferred interconnec-
tions to specific colos (e.g., [46l], [47]). The inherent limitations
of these methods, however, are well-known, especially when
used for geolocating infrastructure-related entities such as
interface IP addresses assigned to router ports [48]], [49], [S0I,
[45]], [S1]. A recent study [15] casts pinning as a constrained
facility search (CFS) problem and leverages various data



sources (e.g., publicly available information about the tenant
ASes at different colos, opportunistic traceroute measurements,
and targeted traceroutes) to ultimately create enough constraints
to pin an inferred interconnection to a single facility. Although
CFS [15] significantly outperforms heuristics based on DNS
naming schemes or IP geolocation, in practice, the approach
suffers from an inability to judge the quality of its input (i.e.,
set of inferred interconnections). As a result, CFS is prone
to errors: either working with inferred interconnections that
are incorrect or pinning connections to facilities that they are
not actually located in. Besides, CFS’s approach of exploiting
opportunistic traceroute measurements is not a reliable recipe
for mapping all the interconnections at a target facility.

There are also instances where colo providers establish fiber-
optic connections (“tethers”) between their datacenters to give
customers in their newer datacenter(s), where there is typically
plenty of space, the option to interconnect with existing
customers located in the older datacenter(s), where space has
become scarce [[15)]. Since “tethering” is typically invisible to
traceroute, mapping interconnections in such settings simply
means identifying the campus or “logical” facility of tethered
locations where the given datacenter provider operates the
colos and offers interconnection services. An interconnection
option known as remote peering [52] can similarly be viewed
as a type of “tethering". Here, remote peering refers to peering
without a physical presence at the IXP and is typically realized
by a third-party such as an IXP reseller that operates a Layer-2
infrastructure to connect the remote peer’s router to one or more
ports at the IXP’s switch. While inferring the details of remote
peering, especially the differentiation between remote and local
peers, is an interesting problem in its own right [33], as far
as our mapping effort described in this paper is concerned,
our highly localized traceroute campaigns targeting our three
CoreSite locations minimize the likelihood of encountering
remote peers and wrongly mapping the remote router to target
facility that houses the IXP. We leave the detailed treatment
of remote peering as outlined in [53] for future work.

In terms of the use of the Belief Propagation (BP) algorithm
as our technique-of-choice for performing inference on data
with probabilistic interdependencies [54] (i.e., pinning inferred
interconnections), we are only aware of some isolated applica-
tions of BP to Internet measurement. One such example is for
adaptive diagnosis in distributed systems (e.g., see [S5]). Some
other problems where this technique has been applied include
fraud detection [56]], fake reviews [S7]], [58]], and collective
classification of web pages [39].

Finally, our work provides a complementary view of Duraira-
jan et al.’s effort [60] on mapping the US long-haul fiber-optic
infrastructure. In particular, by zooming in on the nodes (i.e.,
cities) of that map and focusing on the colocation facilities
in those cities where the different long-haul optic-fiber routes
terminate or originate, our effort aims to reveal the intra-facility
connectivity fabric responsible for “handing over” traffic from
one tenant to another. As such, while our work does not attempt
to connect the US long-haul fiber-optic connectivity fabric
with the connectivity fabrics in the thousands of colocation
facilities across the US, it does contribute a key piece to the
routing puzzle: determining the physical routes over which a

TABLE I: Information about the target CoreSite facilities.

Facility  Address CS PDB ASNs VPs Target IPs
One Willshire/

LAX 900 N Alameda St 290 217 444 142 3637

CHI 427 S La Salle St 46 13 44 47 315

MIA 2115 NW 22nd St 27 10 27 34 188

service provider’s traffic flows in the Internet (within the US).
Knowing these physical routes helps shed light on a number of
inter-domain networking problems such as protecting critical
Internet infrastructure, debugging routing problems, detecting
Internet service failures, and reducing Internet inter-domain
congestion. It also benefits previous efforts on mapping the
Internet’s infrastructure and its “material geography" [61], [62],
[63]] and on studying the role of public policy in critical Internet
infrastructure protection [S].

III. OUR APPROACH IN A NUTSHELL

Our proposed methodology mi? maps the interconnections
inside a target colocation facility. The per-colo casting of the
mapping problem naturally motivates purposefully localized
traceroute probes for the target colo. These probes are more
likely to cross different interfaces of border routers at the
target facility, and thus promise to offer a more complete and
accurate view of the router-level topology at that facility. Our
methodology for mapping interconnections at a colo consists
of the following four main steps.

1) Selecting target facilities. = For the purpose of this
paper and to illustrate the applicability of mi? to different
environments, we select three of the eight different US-based
locations—Los Angeles, Chicago, and Miami—where the
colocation and interconnection solution provider CoreSite owns
and operates datacenters. With Los Angeles being its largest
market, CoreSite operates two colos in LA that are connected
or “tethered” to form a large-sized single virtual facility or
campus (LAX)E] In addition to hosting the largest number
of tenants among all CoreSite facilities, the LAX facility is
also where CoreSite operates the largest IXP on the West
Coast of the US. In addition, as we became aware during our
later validation efforts (see Section VII for details), starting in
2013, this facility also houses CoreSite’s Open Cloud Exchange
where networks and enterprises can establish virtual private
interconnections to connect directly to their favorite cloud
providers. We view the combination of the number of tenants
in a colo and the different types of interconnection options
offered at a colo as an adequate indicator of the role a colo
plays in the geographic area it serves and is located in. In
this sense, when compared to the LAX facility, the CoreSite
Chicago (CHI) and CoreSite Miami (MIA) facilities with some
30+ and 15+ tenants in a single building, respectively, represent
medium- and small-sized colos that also operate no IXP and/or
cloud exchange and offer only standard interconnections in the
form of cross connections. Table |I| (columns 1-5) summarizes
the basic information about the three selected target facilities at
the time when we performed our mapping exercise (i.e., early

4We leave the problem of accurately mapping interconnections in an IXP
that spans multiple geo-dispersed facilities [53] for future work.



2016). Columns “CS” and “PDB” list the number of tenants
as provided by CoreSite [64] and PeeringDB [635]], respectively.
The column “ASNs” shows how many AS numbers belong to
the tenants provided by CS or PDBE]

2) Performing localized measurements.  Given a target
facility, the next step of our approach consists of performing
traceroute measurements in a “localized” manner. To this end,
we use carefully designed traceroutes where both the vantage
points (VPs), for launching the traceroutes, and the traceroute
targets are chosen so as to increase the likelihood that the
resulting traceroute probes will traverse the interconnections
that are utilized by the different tenants in this target facil-
ity. Running such a colocation-specific traceroute campaign
requires (i) obtaining publicly available information about
the target facility, e.g., list of tenants, and co-located IXP(s),
(ii) selecting appropriate VPs, and (iii) properly identifying
traceroute targets. Table [I] indicates, in the last two columns,
the number of VPs and target IP addresses used for mapping
the interconnections at the different colos.

Vantage point selection. In terms of VP selection, we
leverage both automated looking glasses (LGs) from traceroute
repositories (e.g., [65], [66]) and RIPE Atlas probes [67]]. For
LGs, we prefer those residing within a tenant AS to those
that are at the shortest AS-hop distance within a tenant AS’s
customer cone, and among these qualified LGs, we select those
that are located within the city of the target facility or, in case
there are none, those that are geographically closest to the target
facility. For RIPE Atlas probes, after applying the same shortest
AS-hop criteria as for LGs, we only considered qualified RIPE
Atlas probes that are within a 100-mile radius of the target
facility. The first two rows of Table [[] provide the details on the
LG and RIPE Atlas vantage points, i.e., the number of unique
VP IP addresses and the corresponding counts of unique ASes
that were used for the different measurement campaigns (MIA,
CHI, and LAX).

Target selection. ~ With respect to traceroute targets, we select
local IP addresses (i.e., IPs of tenant ASes that are derived from
a large pool of geolocated IP addresses collected from major
P2P applications and are, on average, some 75 miles from
the target facility) and local web servers (i.e., servers hosted
by tenant ASes, located in the same city as the target facility
and geolocated within a 50-mile radius of the target facility).
To geolocate IP addresses, we used three different databases—
MaxMind [68]], IP2location [69], and EdgeScape [70]—and
employed majority voting to decide on the final answer. If,
for some tenant in a target facility, neither of these selections
yields an IP, we identify all the /24 prefixes advertised by
this tenant, geolocate the first IP in each prefix, and select
all IP addresses that are within a 50-mile radius of our target
facility as traceroute destinations for such an unseen tenant.
The last three rows of Table |lI| present the breakdown of target
IP addresses and their ASes, for each of the three campaigns,
by the different selection methods.

3) Inferring interconnections.  With these localized tracer-

5Some effort is required to map the listed tenants to the corresponding ASes
and identify the associated ASNs.

TABLE II: Characteristics of vantage points’ and destination IP
addresses’ selection for the different measurement campaigns.

MIA CHI LAX
[ AS || TP | AS | AS
LG | 24 21 23 22 95 77
RIPE 10 6 24 16 47 21
Local IP | 24 19 23 29 95 | 179
Local Web | 86 15 272 17 1,049 64
Unseen AS | 78 1 20 8 2,493 68

outes from a single campaign, the third step tackles the
problem of inferring the interconnections that are traversed by
these traceroute probes. Our goal here is to identify border
routers rather than border interfaces. This strategy allows
us to corroborate different pieces of information to ensure
robustness to potential error in individual pieces. The main
challenge is to accurately and reliably identify the pairs of
border routers associated with each traversed interconnection
and determine the owner ASes of those routers. To address
this challenge, we develop a set of heuristics that exploit the
colocation-centric nature of the available traceroutes. They
are designed to produce a router-level view of all interfaces
encountered by these traceroutes that is self-consistent (in
terms of assigning interfaces to routers and routers to ASes
and identifying border routers) and self-evident (in terms of
being supported by multiple pieces of evidence). This approach
allows us to cope with unreliable IP-to-AS mapping results as
well as other inaccuracies such as address sharing, i.e., one
AS loaning an IP address to another so that both ends of a
link have addresses from the same prefix.

4) Pinning interconnections.  Given such a set of inferred
interconnections, mi2?’s final step consists of geolocating or
“pinning” them to the inside or outside of the target facility.
The main challenge here is to deal with incomplete or partially
incorrect information about the location of some of the observed
interfaces. To this end, we formulate the pinning task as a
statistical inference problem for a specially defined Markov
Random Field (MRF) graphical model, and we use the Belief
Propagation (BP) algorithm to solve it. The benefits of this
approach to pinning interconnections are that the MRF model
can robustly cope with the inherent “noise” in traceroute-based
inferences and BP expresses the pinning results as “beliefs”
(i.e., inferred interconnections are mapped to the inside or
outside of the target facility with certain probabilities). We
defer the discussion of these steps to Sections [[V] and [V]

IV. INFERRING INTERCONNECTIONS
A. Problem Formulation

A commonly used approach for inferring interconnections
between pairs of ASes from traceroute data involves mapping
of the IP address at each hop of a traceroute to its correspond-
ing AS, and searching the resulting AS-augmented view of
traceroutes for adjacent IP hops with different ASes. A change
in ASN of adjacent hops presents an inter-AS IP segment
which indicates the presence of an interconnection. In practice,
however, accurately identifying inter-AS IP segments from
traceroutes and properly counting the corresponding unique
interconnections are challenging problems. We use the intuitive



Forward traceroute

Backward traceroute

Fig. 1: An example router-level topology depicting an inter-AS
IP-level segment (i.e., interconnection).

notion of near-side and far-side 1P addresses for an inter-AS
segment that is detected in a traceroute to indicate the order
in which these two hops are observed in that traceroute.

Among the reasons for why it is inherently difficult to reliably
determine an inter-AS segment from a traceroute are the error-
prone nature of all existing IP-to-AS mapping techniques [71]
and the practice of subnet sharing between the two interfaces
(i.e., using a /30 or a /31 for addressing) on either side of
an interconnection. Figure [I] illustrates the problem using a
simple linear topology with four routers. The router interfaces
in the figure are colored based on the (owner) AS allocating the
corresponding IP address. The interconnection (link /P, —IP.)
is between the two border routers (R; and R5) where R, is
owned by AS1 and R, is owned by AS2. Per Figure [I] the
interfaces on the two ends of this interconnection are allocated
by AS2. Figure [I| also shows a (forward) traceroute from AS1
to AS2 that traverses the hops IP, — IP, — IP. — IP4 and
correctly identifies the adjacent hops IP, — IP, as the inter-AS
IP segment. The (backward) traceroute from AS2 to AS1 that
traverses this same segment in the opposite direction, however,
incorrectly identifies IP.» — IPy as the inter-AS TP segment
for the same interconnection.

Another challenge is posed by routers that do not respond
using the ingress interface but instead use a default interface
(e.g., IP; in Figure . For example, assuming that the left
border router in Figure [T responds to the forward traceroute
with the default interface IP; that is not even along the path and
is mapped to another AS (say AS3), then the result would be an
incorrectly inferred inter-AS segment (between AS1 and AS3)
along this path. Finally, there is also the problem of determining
whether different inter-AS IP segments are associated with the
same physical interconnection. For instance, the two inter-AS IP
segments /P, —IP. and IP,—IP. in Figure E] are both associated
with the same physical link (IP., — IP.). This example shows
how the commonly used method of simply counting all the inter-
AS TP segments inflates the actual number of interconnections
and an alternative method is needed to address this issue.

To address these challenges associated with identifying
the correct IP-level segment with the physical AS-level
interconnection, we advance the existing literature on IP-
to-AS mapping by exploiting the localized nature of our
traceroute measurements. In particular, our strategy of executing
highly localized probing campaigns, unlike general-purpose
or opportunistically launched traceroutes, can be expected to
reveal multiple interfaces of the different tenant ASes’ routers

(i.e., alias sets, where an alias set is defined as a subset of
interfaces of a router) inside or in close vicinity of these
target facilities. Our key intuition is that by leveraging such
an alias-set-based aggregate view produced by our traceroutes,
inferring the owner ASes of encountered routers can be
performed more accurately compared to relying on isolated
interfaces to determine border routers and, hence, identifying
the interconnections between them will be less error prone.

Building on this intuition, our methodology for inferring
interconnections comprises the following steps: (i) identifying
alias sets of individual routers, (ii) determining the owner AS
of each identified router (including border routers), and (iii)
properly accounting for the interconnections between identified
border routers. In the remainder of this section, we elucidate
the different techniques used in the above steps.

B. Identifying Individual Routers

To obtain the aggregate view of the interface addresses
encountered in our set of localized measurements, we rely
on the alias resolution technique of MIDAR [45] (referred
to as the Alias heuristic). Commonly used alias resolution
techniques such as MIDAR, however, are known to result in
false negatives when routers are unresponsive to probe requests,
do not use monotonic IP ID counters’} or do not share an IP
ID counter across interfaces. In fact, any IP-ID-based alias
resolution technique is unable to identify an alias associated
with such routers [41} p. 3]. Inferring these alias set{] missed
by MIDAR requires further efforts. Here, instead of exploring
the feasibility of more generic alternative IP alias resolution
techniques such as Palmtree [[72]], we rely on two new hand-
crafted heuristics that are motivated by our settings and aim
at creating a consistent alignment of the inter-AS IP segments
encountered in the different localized traceroutes.

Fan In & Fan Out heuristics. To explain these two new
heuristics, consider a collection of inter-AS IP segments
inferred from different traceroutes that all share either the
second address of a segment, a Fan-in scenario as shown in
Figure [Z_IL or the first address of a segment, a Fan-out scenario
as in Figure The color of a router or interface, in Figure
indicates the corresponding owner ASE] For both the Fan-in
and Fan-out cases, assuming that the underlying traceroutes do
not encounter layer-2 switches along the way and that routers
respond with their incoming interface Hﬂ Figure 2 also depicts
the only plausible router-level topology that is consistent with
all the observed inter-AS IP segments. More specifically, in
the Fan-in scenario, the first hops of all inter-AS IP segments,
e.g., IP, through [P, in Figure [2I} must form an alias set. In
the case of Fan-out, Figure [ZLI], for each of the four second
hops, there must be an IP address from the same subnet (thus

%The IP identifier (IP ID) is a 16 (32) bits field in the IPv4 (v6) header
used for aiding reassembly of fragmented packets. Many TCP/IP stacks use a
simple counter to set the value of the IP ID field.

7Since alias set is a subset of interfaces belonging to the same router,
different alias sets refer to different routers.

SFigure indicates owner ASes only for illustration; knowledge of owner
ASes is not required for determining alias sets.

In most countries, the fraction of routers that respond with their incoming
interface is above 50%. The fraction is even higher in the U.S. [73].
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Fig. 2: (I) Fan-in, and (II) Fan-out structures illustrating (A) inter-AS IP segments from traceroutes, and (B) the only plausible

router-level topology that is consistent with the observations.

owned by the same AS) that is a member of an alias set with
the first-hop IP address.

C. Determining Owner AS of Routers

To determine the AS owner of each inferred router (or
alias set), we first apply a commonly used IP-to-AS mapping
heuristic [[74] to assign the default (i.e., BGP-based) AS owner
to each encountered interface in our campaign. A key element
of mi? is to change this default AS owner assignment for each
interface for which it has convincing evidence that a change
is in order. We next discuss several heuristics that mi? applies
(in the presented order) to determine an interface’s AS owner,
either by leveraging information in the form of alias sets that
we identified using the Alias, Fan-in, or Fan-out techniques,
or by relying on domain-specific heuristics that can, where
applicable, link interfaces with their corresponding routers in
a more direct manner.

a. Conservative voting heuristic.  First, we employ a more
conservative version of the commonly used majority voting
heuristic [49], [[75]. Instead of a simple majority voting scheme
to determine the AS owner of a router, we use a conservative
voting heuristic and declare a router to be owned by AS X
if the number of interfaces that have been mapped to AS X
is more than two-times plus one of that mapped to any other
AS. This heuristic ensures a degree of robustness to errors that
are prevalent in traditional (i.e., BGP-based) approaches. In
particular, when using this conservative voting heuristic, no
AS owner is assigned for a router whose alias set is either
small or does not result in a clear majority.

b. IXP-assigned IPs heuristicc  Next, to ensure that our
approach is also capable of inferring public IXP-provided
interconnections among ASes, we also include in our tool-
kit the previously proposed IXP-assigned IPs heuristic that
was specially designed to infer public interconnections from
traceroutes [28]], [33]. In short, ASes that are members at an
IXP use addresses from the IXP’s IP prefix on their router
interfaces attached to the IXP switch. To identify the member
AS to which an observed IP;;,, was assigned, we consider all
the next hops of that IP;;, across different traceroutes. We
conclude that IP;;,, is assigned to (and the corresponding router
is owned by) AS X if the next hop IPs across all traceroutes
are owned by X as shown in Figure [3]

c. Sink IP heuristic.  Our third heuristic is motivated by
the observation that many of our localized traceroutes that

are destined toward small regional tenant ASes terminate at
a specific set of IP addresses, referred to as sink IPs, before
they reach the destination AS[76]. Moreover, these sink IP
addresses are never observed in traceroutes toward other ASes.
The strong association between small regional ASes and sink
IPs suggests that these IPs reside on a router that is owned by
the regional AS (perhaps these IPs reside on the first router on
the path to the regional ASes that implements the policy of
blocking traceroutes). The validity of the heuristic is apparent
for sink IPs with informative DNS names, e.g., the sink IP for
AS30188 (Televergence Solutions Inc.) is advertised by AS3257
(GTT), but its DNS name is televergence-gw.ip4.gtt.net.

d. Subnet matching heuristic.  In instances where an inter-
connection is traversed by traceroutes in both directions, the
subnet matching heuristic leverages the use of the same subnet
between interfaces on either ends of the interconnection to
accurately determine the inter-AS segment (see also [[77]] that de-
scribes a similar idea in the context of a newly proposed IP alias
inference method). To illustrate, consider the two traceroutes
over the router-level topology shown in Figure [} IP,(AS1)
— IP,(AS1) — IP.(AS2) and IP;(AS2) — IPy (AS1), where
IP,(ASi) denotes that IP, was mapped to ASi. Suppose IPy,
and [Py share a subnet and the (border) routers respond to
traceroute probes using the ingress interface’s IP [78]. The two
traceroutes, hence, must pass through the same subnet, i.e.,
IP,(AS1) — IPy (AS1), in both directions in which case the
subnet matching heuristic condition holds. Moreover, since the
next hop IPs (from /Py to IP. in the forward direction and from
IP4 to IPy in the reverse direction) belong to different ASes,
the router on the right must be owned by AS2 and therefore the
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Fig. 3: (A) The traceroute view of traces that hit the IXP, and
(B) the inferred physical router-level connections corresponding
with the IXP.
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Fig. 4: (A) The “traceroute view” of an interconnection
observed from opposite directions, and (B) the corresponding
physical router-level topology.

link IP,(AS1) — IPy (AS1) is an interconnection between AS1
and AS2. It also implies that IP4(AS2) and IP,(AS1) are part of

an alias set, but failed to be identified as such by MIDAR [45].

In practice, we use XNET [79] to identify all IP address pairs
that are on the same subnet. Among the IP-segments from
AS1 to AS2 and the reverse direction, we examine whether
the far-side of one inter-AS IP segment (e.g., IPy (AS1)) is
in the same subnet with the near-side of another IP-segment
(e.g., IP,(AS1)) in the reverse direction. If these conditions are
satisfied, we re-map the near-side IP (i.e., IP;) to AS2 instead
of AS1.

e. Valley-free heuristic.  If none of the above heuristics
determine the AS owner of an identified router, we label
the owner as “ambiguous” and apply the Valley-free heuristic
that leverages control plane information, i.e., inferred AS
relationships [80]. Specifically, we consider all traceroutes
that pass through any of the interfaces of an ambiguous router
and focus on the AS-level view of the three-hop segment—the
interface, and the hops before and after that interface. Iterating
through the list of potential owner ASes of each interface, we
check each time whether the resulting AS-level path segment
is valley free. Any candidate AS that satisfies this condition
in all traceroutes is considered to be a viable owner for this
particular ambiguous router. In the case of multiple candidate
ASes, we select an owner AS at random.

Apart from the IXP-assigned IPs and Valley-free heuristics,
all the aforementioned heuristics are improvements over
existing techniques and have been tailored to leverage the
localized nature of our traceroute measurements. Note that
a successful assignment of an AS owner to a router by
any of these heuristics results in all interfaces of the router
being mapped to that same AS owner. Thus, for any router,
assuming more than one heuristic is found to be applicable,
observing consistent outcomes (i.e., owner AS assignment to
that router) across the different heuristics will at once increase
our confidence in the assignment. Finally, if all of our heuristics
fail to identify the AS owner, mi? refrains from making any
changes and honors the original BGP-based AS ownership
assignment for the concerned interfaces.

D. Accurate Interconnection Accounting

A key implication of accurately inferring the owner AS of
border routers is that the resulting router-level view avoids
overcounting the actual number of interconnections encountered
in traceroutes. In particular, our Fan-in and Subnet matching
heuristics offer concrete guidelines for aggregating a group
of inter-AS IP segments that are associated with a single

interconnection. For example, the inferred physical router-level
view of the Fan-in scenario in Figure [2]| clearly shows that there
is a single interconnection between the two ASes. Therefore,
simply counting the number of inter-AS IP segments in different
traceroutes as in [15] will typically result in inflating the actual
number of interconnections, potentially by significant amounts,
depending on the observed traceroute view.

V. PINNING INTERCONNECTIONS

Given a set of inferred interconnections from the previous
step, the goal of “pinning” is to determine whether the interfaces
on either side of a given interconnection (and hence the
interconnection itself) are located inside or outside of our
target colo. There are two challenges in this pinning process:
(i) how to determine whether two directly connected interfaces
are colocated in the same facility and (ii) how to prevent
erroneous information about an interface from propagating
to other interfaces and negatively impacting our ability to
accurately pin them. To cope with these challenges, we adopt
a probabilistic technique to pin the location of all interfaces
associated with the inferred interconnections. To this end, we
first identify a set of “anchor” interfaces for which we have
strong evidence that they should be pinned to either the inside or
outside of the target facility. Second, using domain knowledge,
we establish a few heuristic rules for assessing the likelihood
of co-presence for pairs of interfaces, i.e., the likelihood that
two interfaces are located in the same facility. Leveraging a
graphical model in the form of a Markov Random Field (MRF),
we capture these likelihoods by encoding them as edge weights
between related interfaces. Third, we use majority voting among
the output of the three IP2Geo databases (i.e., Edgescape,
IP2Location, and Maxmind) to infer the rough location of
each observed interface. Then we consider a subgraph of our
original graphical model that only contains all nodes (interfaces)
that were mapped by the above method to the same metro
area where our target colo facility is located, and we use this
subgraph as input to the Belief Propagation algorithm. This
algorithm implements a probabilistic inference technique that
determines the probabilities with which the different interfaces
are pinned to the inside (or outside) of the target facility.
Since this technique considers for each interface the weighted
effect of all other related interfaces, it can effectively deal with
“noise” in the input (e.g., erroneous information on anchor or
co-located interfaces). Leveraging this subgraph of the original
MREF graphical model further reduces noise and computational
overhead for running the Belief Propagation algorithm. We
next describe these different steps for pinning in more detail.

A. Identifying Anchor Interfaces

Anchor interfaces that can, to the best of our knowledge, be
reliably pinned to the inside (or outside) of the target facility
are key to bootstrapping the pinning process. The information
sources that we utilize to determine such anchor interfaces
are (i) facility information embedded in DNS names [39], (ii)
IXP-provided information about colocated IP addresses [29],
[81]], and (iii) the presence of small regional ASes among the
facility’s tenants.



TABLE III: Counts of IN-anchors and OUT-anchors identified
by different techniques for each colo.

Miami Chicago Los Angeles

IN OUT IN OUT IN OUT

DNS hints 0 21 0 40 3 43

IXP 0 7 3 27 238 64

Small Regional AS 11 0 126 0 336 0

Identification and inclusion of the third information source
to determine anchor interfaces is yet another unique trait of our
facility-oriented approach to mapping interconnections. This
source exploits the presence of small regional tenant ASes in
our target facility towards identifying anchor interfaces. More
specifically, because small regional tenant ASes typically deal
with limited traffic volumes, economic arguments suggest that
they establish their interconnections at a single facility in the
city or region where their customers reside. It is therefore
reasonable to assume that all the observed border IP addresses
associated with such small regional tenant ASes are located in
one and the same facility. We consider all observed IP addresses
(including any LG) associated with such small regional ASes
to be located in the same colo. More formally, we first use
CAIDA’s AS rank data [82] and consider a tenant AS to be
a potential small regional AS if it has less than 5 ASes in its
customer cone and advertises less than 50 /24-prefixes. We
then cross-check any of these potential regional ASes against
PeeringDB and only consider those as our regional ASes that
according to PeeringDB are present at a single colo in the
metro area of our target facility.

Table presents the number of in/out anchors that we
identified using each of these three techniques in each one of
the target cities. The number and relative fraction of in/out
anchors in each campaign depends on various factors including
the number of colos in the target city and the number of tenant
ASes in the target colo.

B. Encoding Co-presence Rules

For identifying any instances of co-presence of two or more
interfaces observed in a set of traceroutes from our campaign,
we devised four co-presence heuristics or rules. These rules
are listed below in the order of decreasing confidence that we
have in them. The first two rules are applicable to two or more
interfaces while the last two are only relevant to two adjacent
hops of a traceroute.

1) Alias sets.  All interfaces in an alias set belong to the
same router and must therefore be pinned to the same facility.

2) Common or Different PoP-tags. @~ Many ASes embed a
combination of geo-location code with trailing digits (e.g., paol
and pao3) to denote their points of presence (PoPs) at different
colocation facilities in the same city. We call these alphanumeric
strings PoP-tag All interfaces of a tenant AS that are
associated with the same PoP-tag must be pinned to the
same facility. Alternatively, interfaces (of the same tenant AS)

10For identifying PoP-tags, we used simple parsing rules that look for 3-
letter segments (matching an airport code) immediately followed by numeric
values.

associated with different PoP-tags (i.e., implying different PoPs)
should be pinned to different facilities.

3) Inter-domain links. The interfaces of two adjacent hops
of a traceroute that belong to different ASes (i.e., inter-AS
IP segment) should be pinned to the same facility if their
difference in RTT delays is relatively small (e.g., less than a
few milliseconds).

4) Intra-domain links. The interfaces of two adjacent hops
of a traceroute that belong to the same AS (i.e., intra-AS
IP segment) should be pinned to the same facility with a
probability that is inversely proportional to their RTT difference.
Regarding the last two rules, we note that the highly-localized
nature of our probes coupled with commonly-used hot-potato
routing suggests that the (forward and reverse) routes from a
local vantage to both ends of an inter-AS interconnection are
similar and will therefore result in comparable RTT values.

C. MRF Model Construction

To construct our Markov Random Field (MRF) graphical
model, we represent each observed interface in a measurement
campaign as a node in a graph, and encode a node’s co-presence
relationships with other interfaces as edges. Each edge is
annotated with a weight that indicates our relative level of
confidence in the corresponding co-presence relationship. This
encoding entails augmenting the final graph with additional
“logical” nodes for the Alias sets and Common PoP-tags rules.
For these rules, if nodes a, b, ¢, and d are the interfaces of an
alias set (or PoP-tag) A, instead of encoding this co-presence
relationship as a clique among the four nodes, we add a new
logical node A to the graph and encode the alias set (or PoP-
tag) relationships as a star-shaped graphlet, containing edges
between the center node A and each of the nodes a — d. The
rationale for substituting densely-connected substructures like
cliques with more sparsely-connected graphlets such as stars is
to reduce the number of cycles in the resulting graphical model.
Reducing cycles is generally recommended when performing
certain inference algorithms (e.g., Belief Propagation) on MRF
graphical models [54].

Note that to facilitate reproducibility efforts, we provide
details about the parameterization of our MRF graphical model
and our choice of model parameters in the Supplementary
Material (Part A).

D. Probabilistic Inference for Pinning

Belief Propagation (BP) is an algorithm for performing
inference on data with probabilistic inter-dependencies [54].
The BP algorithm uses our MRF graphical model as input
to infer the posterior state probabilities of all nodes in the
generated graph given the observed states for anchor nodes
(i.e., interfaces). The algorithm proceeds by iteratively passing
messages between nodes based on the previous beliefs and the
pairwise joint probabilities. The algorithm updates the state
of each node in each iteration until a significant fraction (say
90%) of the nodes reach a steady (i.e., non-oscillating) state.
While there is no theoretical guarantee of BP’s convergence,
in practice BP is known to work well, typically converging
quickly to a stable and accurate solution [54], [83].



TABLE IV: The breakdown of pinned interconnections by
mi? in the LAX campaign based on the pinning status—
“hit” (h), “miss” (m), and “close-call (c)—of the interfaces
at both ends. Each cell is further divided into “private + public”
interconnections.

| h-h | he | hm || cc | em | m-m
MIA 2240 23+0 8426 5+0 3+0 161+1
CHI 48+0 7+0 34+0 13+0 | 28+0 130+0
LAX 1228+1343 109+1 83+25 76+0 28+0 94+77

The BP algorithm emits for each node the probability with
which it is pinned to the inside of the target facility. Nodes
that reach a steady state are pinned to the inside of the target
facility by the algorithm if their associated probability is 0.9 or
higher. These nodes are termed hits, i.e., they are considered to
be inside of the facility. In contrast, nodes that reach a steady
state with an associated probability of 0.1 or less are referred
to as misses and are considered to be outside of the target
facility. The rest of the nodes, including the unstable ones, are
close calls and are not mapped by our approach. With this
definition of “hits” and “misses” for individual interfaces, to
determine which inferred interconnections are located inside
our target facility, we simply have to look at either ends of a
given interconnection and check whether our algorithm mapped
both the interfaces to the inside of our target facility.

An illustration of the insensitivity of the BP-based pinning
inference results to our parameterization of the underlying
MRF graphical model and empirical evidence in support
of the accuracy of our pinning results are provided in the
Supplementary Material (Part B).

VI. RESULTS AND COMPARISONS

In an effort to illustrate and evaluate the key elements of

mi?, we selected three CoreSite facilities—LAX, CHI, and
MIA—as targets. Table [I] presents some basic information
about these facilities and the corresponding localized traceroute
campaigns that we ran to obtain the input for mi2. With our
particular selection of traceroute sources (i.e., vantage points)
and destinations, we had to launch only a total of 170K, 8K
and 2.5K traceroutes for the LAX, CHI, and MIA campaigns,
respectively, and we gathered all of these measurements in a
single day.
Mapping interfaces to ASes. mi?’s ability to infer inter-
connections rests largely on its effective use of alias-based
aggregate information for mapping interfaces to ASes. In this
regard, Table |V| shows the results of applying our heuristics
to the interfaces that we observed in the three measurement
campaigns. Each row corresponds to a distinct measurement
campaign (e.g., MIA). While the “Total” column provides
the counts of unique interfaces observed in all collected
traceroutes, the column labelled “AS-Inferred” shows the subset
of interfaces for which our heuristics for inferring an AS owner
(refer Section were applicable. The remaining interfaces
(i.e., “Total” — “AS-Inferred”) for each campaign (or row) are
mostly associated with intra-AS links or simply do not trigger
any of our heuristics due to their infrequent appearances in
our traceroutes.

The remaining seven columns of Table [V] (from “Alias”
through “Valley Free”) show the breakdown of all the inferred
interfaces (under “Inferred”) across the different heuristics
used for inferring their AS owners. The three columns under
“Majority Voting” show the technique that was used to infer
the association of a group of interfaces that are part of an
alias set. Whenever multiple heuristics were applicable to a
given interface and inferred the same owner AS, we counted
the interface only towards the first applicable heuristic (i.e.,
left-most column). If both Fan-in and Fan-out, for instance,
identify AS X as the owner of a given interface, we only
increment the count for Fan-in. Across all three campaigns,
as Table [V] shows, our conservative majority voting heuristic
infers the owner AS for roughly 70% of IPs that are associated
with an Alias set. This percentage increases to over 90% when
we add the IPs whose owner AS is inferred by the majority
voting heuristic on alias sets that are determined by Fan-in,
Fan-out, and Sink IP heuristic. Furthermore, the AS owners
for a small fraction (< 5%) of interfaces are determined by
the Valley-free heuristic.

Inferring interconnections.  Given all the interfaces from
each of the three campaigns for which our heuristics were
applicable and inferred a unique AS owner, Table summa-
rizes our findings about the resulting inferred interconnections.
The first two columns of Table list the total number of
unique inferred interconnections at the AS-level and IP-level
for each campaign, respectively. The third column shows the
number of inferred IP-level interconnections after applying our
aggregation method for counting interconnections described in
Section The fourth and fifth columns shows the subset
of AS-level and aggregated IP-level interconnections (and their
percentage) that are between tenant ASes in the respective target
facility. The results in Table [VI| highlight two important points.
First, the number of inferred IP-level interconnections drops by
more than 50% as a result of our aggregation method which
illustrates the importance of this aggregation step in preventing
the incorrect overcounting of interconnections. Second, some
60%-80% of inferred (aggregate IP-level) interconnections are
between known tenants in the different target facilities which
demonstrates our success in “localizing” the traceroutes of
our measurement campaigns.

From inferred to pinned interconnections. The inferred
(aggregated) IP-level interconnections between tenant ASes in
a target facility (i.e., “Agg. IP-level” in Table [VI) are the result
of running mi2’s inference component on the data produced by
the corresponding localized measurement campaigns. Now,
we apply mi?’s pinning algorithm to map these inferred
interconnections to the inside (or outside) of the corresponding
target facility.

For each colocation facility and the associated localized
measurements, mi2’s probabilistic pinning algorithm labels
each observed IP address as (i) a “hit” (h), when the address
is pinned to the inside of the facility, or (ii) a “miss” (m),
when it is pinned to the outside of the facility, or (iii) a “close
call” (c), when the IP address is not pinned. Consequently,
the inferred (aggregated) IP-level interconnections can be
subdivided into six groups based on the labels assigned to either



TABLE V: mi?: Results for heuristic-based inference of owner AS for observed interface IPs.

| | | Majority Voting | Heuristics

| Total | AS-Inferred | Alias Fan-in Fan-out | IXP  Sink IP Subnet Valley Free
MIA 2,569 1,810 78% 6% 3% 1% 8% 0.0% 3%
CHI 2,993 2,038 70% 6% 3% 2% 14% 0.1% 5%
LAX | 22,324 16,444 68% 7% 5% 2% 14% 0.3% 5%

TABLE VI: mi?: Interconnections inferred at the AS and IP level in the different campaigns.

Inferred Interconnections
AS-level Agg. IP-level
AS-level IP-level ‘ Agg. IP-level (b/w tenants)  (b/w tenants)
MIA 316 1,634 644 164 396 (62%)
CHI 390 1,541 703 181 397 (56%)
LAX 3,518 20,712 8,039 2,662 6,602 (82%)

ends of each interconnection. Table presents the number
of interconnections in each one of these six pinned groups of
interconnections in the LAX campaign. The interconnections in
each cell of Table [[V] are further divided into “private+public”
based on whether an interconnection is established at an IXP
(public) or not (private). These results show that while a large
percentage of the inferred interconnections in the LAX facility
are pinned to that facility, this percentage is lower for other
campaigns. The main reason for this discrepancy between
the different campaigns is the much larger number of in-
and out-anchors that we utilized for the LAX campaign (see
Table [[I). We defer validation of the inferred interconnections
to Section

Comparisons with MAP-IT and CFS.  Although a number
of recent studies such as [12], [[13]], [14] have dealt with the
problem of inferring interconnections from traceroute data,
none of them have been designed for the purpose of mapping
interconnections in the sense of mi2. Nevertheless, to the
extent possible and where appropriate, we focused on the
CoreSite LAX campus location to perform a comparative study
and report below on the main findings of our efforts. In the
Supplementary Material (Part C), we present a detailed account
of our comparative study between mi? and MAP-IT as well as
CFS.

We first note that a direct comparison of these recent efforts
shows a number of design principles that the resulting tools
have in common. For one, being either explicitly (bdrmap,
CFS) or implicitly (MAP-IT) based on traceroute measurements,
their success depends critically on the availability of suitable
vantage points for launching the traceroutes, including publicly
available Looking Glasses, RIPE Atlas probes, and general-
purpose traceroute servers. Furthermore, being traceroute-based,
the different tools all depend on some form of IP-to-AS
mapping and are therefore restricted to inferring or geo-locating
interconnections between entities that own an AS number
(ASN) and participate in inter-domain routing.

Next, a direct and fair comparison between mi? and bdrmap
is unfortunately not feasible because bdrmap’s focus on a
single network makes the tool not applicable to our colo-centric
setting. On the other hand, MAP-IT allows for an informative
and more direct head-to-head comparison with mi? but clearly

shows the shortcomings of a general-purpose tool for inferring
interconnections. In particular, we observe that the IP-to-AS
mapping produced by MAP-IT can be very unreliable and
inconsistent because of its limited use of relevant information
(e.g., alias sets). Finally, special care is needed when comparing
the results of mi? and CFS. For one, CFS was designed for a
different purpose and setting, does not claim to exhaustively
map the interconnections in a given colocation facility, and
has no publicly available code. Despite these restrictions, we
were able to shed light on some of the observed differences. In
particular, by simply relying on BGP-inferred AS ownership of
routers/interfaces, CFS results in incorrect or inaccurate pinning
results by virtue of incorrectly inferred interconnections.

VII. VALIDATION EFFORTS

Colocation facility providers are in general averse to disclos-
ing data on the interconnections established in their facilities.
Unsurprisingly, our attempts to obtain such information from
the providers of our target colos were futile. The tenants of a
colo are also reluctant to share interconnectivity details, unless
such details are sufficiently coarse so as to not reveal the type,
precise location, and name of the peer of an interconnection
(e.g., [75]). This general paucity of reliable ground truth makes
the validation of any approach for mapping interconnections
(including ours) challenging. In light of these difficulties, we
take a more nuanced approach to validation and discuss its
implications.

A. On Accuracy of mi?

In lieu of a full-fledged validation of mi2, we report on a
number of limited validation efforts that use publicly available
sources of information or hard-to-come-by control-plane data,
or leverage our ongoing collaboration with a large CDN.

IXP-assigned IPs. The IP addresses that IXPs assign to their
members (i.e., the IXP-assigned IP-to-member-AS mappings)
are publicly available [65] and reveal the AS owners of those
IPs. mi? identified the correct owner AS in more than 90% of
600 such IPs.

IPs with informative DNS names. There are often hints
embedded in the DNS names (i.e., PTR records of IP ad-
dresses) that suggest IP address sharing between two ASes.



An IP address with the DNS name ae-0.teliasonera.
chcgil09.us.bb.gin.ntt.net, for instance, should be
inferred to be owned by AS1299 (i.e., TeliaSonera). For more
than 91% of around 400 IP addresses observed in our traceroute
campaigns that have a DNS name from which we can infer an
AS, mi?’s inference matches the AS owners inferred from the
hints.

Ground truth for a tenant AS. We ran show bgp sum-
mary on a router owned by a large CDN that is also a tenant in
the CoreSite LA campus. The BGP summary revealed that the
CDN connected with five other tenants in this facility via five
different interconnections. mi? correctly inferred and pinned
these five interconnections to this target facility. This effort
leveraged our ongoing relationship with this large CDN.

An opportunistic control-plane constellation. = We identified
a LG-enabled router belonging to a tenant AS in CoreSite LA,
i.e., Hurricane Electric (HE), that was tagged to be located
in that facility. Using show bgp summary on this LG, we
obtained the IP address of the next BGP hop (the peer router,
i.e., the neighbor AS) for this tenant and used this information
for validation.. This opportunistic effort produced 160 different
IP-level interconnections between HE and the other tenants in
this facility. mi? correctly inferred and pinned 124 of these 160
interconnections. Manual inspection of the missing 36 revealed
that mi? could not infer them because they served as backup
routes; routes through Equinix served as the preferred option.
We used another LG-enabled router owned by HE, one located
in an Equinix facility in LA, to confirm these path preferences.

Note that some of the errors observed in these reported
validation efforts could be due to a number of reasons including
stale DNS names, incorrect or missing PeeringDB entries, or
missing prefix information for the related IXPs. While these
“spot checks” provide only limited evidence for the general
validity of mi?, they do show that, within the context of the
reliable data we could obtain, our methodology is effective
and has a high degree of accuracy.

B. On Completeness of mi?

One goal of mi? is to map all interconnections at a target

colocation facility. To ascertain if mi? satisfies this goal, we
searched for relevant, but rarely utilized information that the
operators of these facilities make publicly available. In partic-
ular, when combing through various CoreSite-provided online
materials, we came across quarterly investor presentations and
earnings call transcripts that provide up-to-date and presumably
reliable aggregate interconnection-related information on its
LAX facility. Specifically, investor presentation [84]’s time
frame matches that of our LAX measurement campaign and
includes on page 12 the statement “Our entertainment and
gaming ecosystem in Los Angeles is interconnected using
more than 2000 cross connections [i.e., private interconnec-
tions].” That mi? only maps a total of roughly 1300 private
interconnections to the LAX facility is clear evidence that mi?
is, unfortunately, falling short of its goal.

To identify the root cause of this shortcoming, we carefully
combed through a wide range of publicly available CoreSite
material that concerns its LAX facility. Our examinations

revealed that even though the Internet interconnection landscape
has recently undergone rapid changes, there has been little or
no published work that details some of these changes. These
changes can be best seen and analyzed when focusing on
individual colos such as the CoreSite LAX facility and can be
broadly divided into the following three categories.

A new type of tenant. A closer look at the tenant lists
published by colo providers such as CoreSite (e.g., [64], [85])
shows a mix of tenants that consists of a growing number of
enterprises (e.g., digital content providers, multimedia, system
integrators, managed services, etc.) that typically do not own
an AS number (and, hence, do not participate in BGP), and
are deployed in a given facility using IP addresses assigned by
either an upstream provider or by the colo provider. Moreover,
according to published CoreSite statistics [86], since 2013,
the number of such enterprise customers deployed in its LAX
facility alone has grown by almost 50% per year, from some
50+ in 2013 to over 150 in late 2016. They constitute the
fastest growing segment of deployed tenants.

A new type of infrastructure. A few years ago, CoreSite an-
nounced the launch of the company’s (Open) Cloud Exchange,
a switching fabric specifically designed to facilitate interconnec-
tivity among networks, cloud providers, and enterprises in ways
that provide the scalability and elasticity essential for cloud-
based services and applications [2]. Similar platforms have
been launched by other major colo and datacenter providers
such as Equinix [1]] and EdgeConneX [87]]. The attraction of a
cloud exchange for enterprises is that it facilitates establishing
service-to-service interconnectivity among all involved parties
(i.e., enterprises, cloud service providers, customers and clients
of new services provided by enterprises). Such easy-to-establish
interconnectivity typically helps in making new cloud service
offerings successful. However, due to the way they are operated,
cloud exchanges remain by and large invisible to traditional
(i.e., traceroute-based or BGP-based) measurement campaigns.

A new type of interconnection service.  To satisfy the
increasing demand for this service-to-service interconnectivity,
the colo providers that operate cloud exchanges have introduced
a new interconnection option called virtual private intercon-
nection (VPI). By purchasing a single port from such a cloud
exchange operator, enterprises with or without an AS number
can circumvent the public Internet by establishing VPIs to any
number of cloud service providers that are present at that cloud
exchange. These cloud exchanges also provide a programmable,
real-time cloud management portal that supports the varied
needs of enterprise customers by enabling them to establish
VPIs in a highly-flexible, on-demand, and near real-time manner
(e.g., see [88]]).

The impact that these observed changes have had on the
Internet interconnection landscape has been profound. Not
only do they turn a large pool of entities (i.e., enterprises
without an ASN) that have so far been largely absent from
the interconnection marketplace into active participants and
buyers, but they also enrich the existing Internet infrastructure
with new entities (i.e., cloud exchanges) that are specifically
designed to support VPIs. For instance, with LA being one
of CoreSite’s biggest markets, the decision of some of the



cloud providers (e.g., AWS and Azure) to deploy in its LAX
campus has served as a “magnet” for new enterprise customers
looking to establish hybrid or multi-cloud (e.g., public and
private clouds) architectures for their businesses or IT needs.
In turn, the presence of these major cloud providers in the
CoreSite LAX facility has fueled a growth in the number
of VPIs at its cloud exchange. To our knowledge, there are
two main reasons why none of these increasingly popular
VPIs are visible to any existing mapping techniques (including
ours). First, all existing techniques for inferring and/or pinning
Internet interconnections, due to their traceroute-based nature
and their reliance on conventional measurement platforms,
lack cloud-centric vantage points (e.g., VMs running in AWS).
Second, current mapping techniques are also unable to deal
with entities that cannot be identified with AS numbers, and
are, in general, incapable of revealing the connectivity at cloud
exchanges due to their reliance on Layer-2 connectivity. As a
result, future progress on accurately and exhaustively mapping
the interconnections in today’s Internet will require novel ideas
for designing and developing suitable new measurement tools
and inference techniques that can cope with these issues (e.g.,
see [189].

VIII. SUMMARY AND OUTLOOK

When we started this work some three years ago, our
objective was to devise a methodology for tackling the yet-
unsolved problem of systematically mapping the Internet’s
interconnections, one colocation facility at a time. On the one
hand, by applying the developed methodology, mi?, to three
colos in the continental U.S., performing some necessarily
limited evaluations, and comparing, to the extent possible,
mi?’s results against those obtained by recently proposed
related efforts, we have made significant progress towards
the stated goal. On the other hand, even though we mapped
only a few colos, by focusing on a large colo (i.e., the
CoreSite’s LAX campus), we have discovered that existing
interconnection options are more complicated than previously
thought and are evolving rapidly. Indeed, by tapping into
previously ignored data sources, our validation efforts have
revealed drastic changes in today’s Internet interconnection
marketplace. In particular, we report on the emergence of
new types of players (e.g., enterprises operating without an
ASN) utilizing new types of interconnections (e.g., VPI) at
newly emerging infrastructures (e.g., cloud exchanges), mention
some of the technological and economic drivers responsible
for this shifting interconnection landscape, and explain why
these findings negatively affect all currently known mapping
efforts.

Our study thus reaffirms the need for re-examining existing
methods that claim to infer and map all types of intercon-
nections that are established and utilized at a given colo that
may or may not operate an IXP and/or a cloud exchange. Our
observations also emphasize that new methods are needed to
track and study the type of “hybrid” connectivity that are in use
today at the Internet’s edge. This hybrid connectivity describes
an emerging strategy whereby one part of an Internet player’s
traffic bypasses the public Internet (i.e., cloud service-related

traffic traversing cloud exchange-provided VPIs), another part
is handled by its upstream ISP (i.e., traversing colo-provided
private interconnections), and yet another portion of its traffic is
exchanged over the colo-owned and colo-operated IXP. As the
number of businesses investing in cloud services is expected to
continue to increase rapidly, multi-cloud strategies are predicted
to become mainstream, and the majority of future workload-
related traffic is anticipated to be handled by cloud-enabled
colos [90], tracking and studying this hybrid connectivity
will significantly shape and define the research efforts of the
networking community. Knowing the structure of this hybrid
connectivity, for instance, is a prerequisite for studying which
types of interconnections will handle the bulk of tomorrow’s
Internet traffic and how much of that traffic will bypass the
public Internet. A better understanding of these and related
problems will shed light on the role that traditional players
such as Internet transit providers and emerging players such
as cloud-centric datacenter providers may play in the future
Internet.
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APPENDIX A
DETAILS OF THE MRF GRAPHICAL MODEL

Parameterization. In our MRF model, we assign a binary
random variable X, to each node v, i.e., each node v can be in
exactly one of two “states” — X, = IN (1) denotes that v is
pinned to the inside of the target facility, and X, = OUT (0)
if it is pinned to the outside, with P[X, = IN] =1— P[X, =
OUT). In particular, the state of each node that represents an
inside (outside) anchor interface is set to IN (OUT). A desirable
feature of an MREF is its ability to effectively encode whether
the likelihood that two connected nodes have similar or opposite
states is high or low (i.e., four possible cases). In particular,
the fully parameterized model for the joint probabilities for
each one of the four possible states for a pair of connected
nodes, v; and v, listed in Table [A 1] encodes the essence of
two of our co-presence rules. In this model, the probabilities
depend nominally on two parameters ¢ and ¢, with ¢ being
the main parameter and € often set to a small value (e.g.,
e = 0.05). As such, Table [A.T[a) explicitly accounts for the
Alias sets co-presence rule where, for two interfaces v; and
v9 in an alias set, high probabilities are assigned to similar
states (e.g., (v = IN) A (v2 = IN)) and low probabilities
to opposite states (e.g., (v1 = IN) A (v = OUT)). Table
[A1}b), in contrast, encodes the Common/Different PoP-tags
co-presence rule that expects a more differentiated assignment
of probabilities (i.e., low probability for pinning two interfaces
belonging to different PoP-tags to the inside of a colocation
facility, and high probabilities for the other three possible
states). Note that the values of the probability fractions for
the four possible states of each rule are simply determined as
follows: first, the numerator is set to (e+¢) and ¢ for states with
high and low probability, respectively. Then, the summation of
all four numerators is used as the denominator of all fractions
so that the sum of all probabilities is equal to one.

TABLE A.1: Joint probabilities for two co-presence rules: (a)
Alias sets, and (b) Different PoP-tags, € <K ¢

(a) Alias sets (b) Different PoP-tags
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Choice of ¢. To complete the MRF construction, a large

training set is typically used to “learn” the proper value of ¢.
For our problem, however, this approach is not feasible because
of a general lack of appropriately labelled training data. Instead,
we take a more pragmatic view and argue that as long as the
Jjoint probabilities assigned for the various co-presence rules
are aligned with the relative level of confidence we have in them
(i.e., in the order indicated above), a probabilistic inference
technique properly pins individual interfaces without being
too sensitive to the specific value of ¢. In fact, being largely
insensitive to the choice of the value of ¢ implies that the
constructed model is inherently robust and that the model’s

output is not an artifact of a specific parameter setting. To
enforce the desired alignment, we simply consider a linear
ordering of rules by setting ¢ = (5 — k)c where k denotes the
order (or rank) of a co-presence rule, i.e., k = 1,2, 3,4 for the
Alias sets, Common or Different PoP-tags, Inter-domain links,
and Intra-domain links rules, respectively. The parameter c,
hence, simply defines the relative gap between the value of ¢
for consecutive rules.

APPENDIX B
SENSITIVITY AND ACCURACY OF BP-BASED PINNING

Sensitivity results for BP-based pinning. Interpreting quanti-
tative results about mi?’s ability to pin inferred interconnections
to a given target facility requires a basic understanding of
the (in)sensitivity of the BP-based pinning method to the
parameterization of the underlying MRF graphical model (see
Section [V-C)). To perform this basic (in)sensitivity analysis, we
consider the case of our LAX campaign and show in Figure
the inferred distribution of “beliefs” (i.e., probabilities)
for all nodes encountered in this campaign as a function of
the parameter c. Figure [B.1] illustrates that the probability
distributions tend to become more bimodal as we increase c.
This behavior implies that the inferred probabilities represent
a clear pattern in the data and are not an artifact of our choice
of the value of the parameter c.

1.0

Belief (Probability)

Fig. B.1: The effect of the parameter ¢ on the distribution of
beliefs for all nodes in the LAX campaign.

Assessing the accuracy of BP-based pinning. We apply a
commonly used test technique to assess the sensitivity of BP’s
outcome to the choice of the parameter c. In particular, we
remove 10% — 60% of randomly selected anchors for testing,
and run the BP algorithm with the remaining anchors. We repeat
each test 10 times using different random sets of anchors. As
an example, consider the case where the goal is to maximize
the number of correctly inferred inside/outside anchors for our
measurement in LA using 40% of anchors for testing.

The left-side plots in Figure (from top to bottom) show
the summary distribution of the fraction of test anchors inside
the target facility in LA that are mapped as hit, miss or close-
call, as a function of c. The right-side plots show the same
information for test anchors outside the target facility in LA.
These results demonstrate that once the value of ¢ exceeds 3
or 4, more than 90% of inside anchors are correctly mapped
and the variations across different runs are very small (< 2%).



The mapping accuracy for outside anchors is around 80% and
exhibits a somewhat larger variability. Note that the relatively
lower accuracy in mapping outside interfaces is caused by
the significantly smaller fraction of outside anchors, which
are likely to be located across a geographically diverse set of
metro areas. (Note that that our main interest is in confirming
that an anchor is inside or outside of our target colo and not in
determining exactly where an outside anchor is located. This
empirical analysis suggests that accuracy is highest for the BP
algorithm for c-values between 4 and 9.
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Fig. B.2: The effect of parameter ¢ on the accuracy of BP for pinning
anchors that are not used for pinning in the CoreSite-LA campaign.

APPENDIX C
COMPARISON OF mi? WITH OTHER APPROACHES

Comparison with the MAP-IT method. @ We report here
on a head-to-head comparison of mi2 with MAP-IT [13],
a recently developed tool specifically designed for inferring
interconnections from a given set of traceroute measurements.
For this comparison, we consider only CoreSite’s LAX campus
and used all the traceroutes from our LAX campaign to
derive the IP (or interface) adjacency graph that the MAP-
IT tool requires as input [91]. Given this input, MAP-IT
identified a total of 2615 unique IP-level interconnections that
further reduced to 2209 (between 1139 pairs of ASes) after
aggregation. The 2209 interconnections inferred by MAP-IT
exclude 31 duplicates that we discovered in MAP-IT’s output.
Furthermore, aggregation for MAP-IT-inferred interconnections
refers to the removal of any instances of interconnection
that represents an already existing interconnection but in the
opposite direction. Between the 8093 mi2-inferred and 2209
MAP-IT-inferred (aggregated) IP-level interconnections, we
find 2156 interconnections that are common, and for 1565 (i.e.,
73%) of them, both approaches infer exactly the same IP-level
segment as the interconnection between the same pair of tenant
ASes.

The most striking difference between the two methods is
the large gap in the number of mi2- and MAP-IT-inferred
(aggregated IP-level) interconnections. To explain this gap, we
checked for how many of the applicable interfaces observed in

our LAX campaign did these two methods infer different AS
owners. We found that for the 22,324 observed interface IPs
in the LAX campaign, mi? and MAP-IT inferred different AS
owners for only 2683 (12%) of them. We refer to this subset
of interfaces with inconsistently inferred AS owners as 1IAS
interfaces. The IIAS interfaces require further examination as
they are the reason for the large difference observed in inferred
interconnections between mi? and MAP-IT.

Upon closer examination of these ITAS interfaces, we noticed
that the MAP-IT-inferred AS owner agrees with the (default)
BGP-inferred AS owner for 80% of the IIAS interfaces; the
mi2-inferred AS owner, in stark contrast, matches with the
BGP-inferred owner for only 18% of the interfaces. For the
rest (i.e., 2%), both techniques deviate from the BGP-derived
AS ownership. These numbers illustrate that mi? is changing
the default BGP-derived AS owner more often than MAP-IT
(i.e., about 4-out-5 times vs. 1-out-of-5 times for the case of
these IIAS interfaces). More importantly, we next show that mi?
only changes the default BGP-derived AS owner of individual
ITAS interfaces based on compelling evidence. In contrast, in
the infrequent cases when MAP-IT changes the BGP-inferred
AS owner of an IIAS interface, it sometimes does so for the
wrong reason. Next, we detail how and why MAP-IT incorrectly
changes the BGP-derived AS owner of some interfaces.

We begin by examining the IIAS interfaces that were
identified as members of an alias set using our Alias heuristic.
For the LAX campaign, there are some 600 such sets, and, for
each of them, mi? leveraged its conservative majority voting
heuristic to infer the unique AS owner for all interfaces in
each set. In contrast, when examining the consistency of the
MAP-IT-inferred AS owner for interfaces in any of these 600
sets, we observed 466 sets (~75%) where the MAP-IT-inferred
AS ownership is internally inconsistent, i.e., MAP-IT declares
that different interfaces of the same router belong to different
ASes.

Even if MAP-IT were to incorporate alias (router-level) infor-
mation in conjunction with the traditional or our conservative
majority voting heuristic (see Section [[V-C), it would remain
less trustworthy than mi? simply because of its limited use of
such information. Recall that in the process of applying the
Subnet matching heuristic, mi? expands the set of observed
interfaces from a given campaign by considering also the
interfaces that were discovered by running XNET [79] using
/29 expansion (see Section [[V-C). For our LAX campaign,
this additional effort produces a more expanded view of each
of the 600 alias sets. This expanded view typically enables
mi? to make a more informed decision about changing or not
changing the BGP-inferred AS ownership of such expanded
alias sets/routers than the MAP-IT method with its partial view
of those alias sets. Indeed, we encountered several instances
among the LAX campaign’s 600 alias sets when MAP-IT with
its partial view incorrectly changed the BGP-inferred AS owner
of the grouping’s interfaces. In contrast, mi? with its expanded
view of these sets coupled with its use of the conservative
voting heuristic relied on strong evidence for not changing the
BGP-inferred AS owners.

Comparison with the CFS method. As a reference point



for our pinning results, we checked the interconnections that
mi? pinned to the inside of a facility against those obtained
by using the recently proposed Constrained Facility Search
(CFS) method [[15]. Note, however, that CFS was designed
for a different purpose and setting, it does not claim to
exhaustively map the interconnections inside any particular
facility, and it has no publicly available code. For these reasons,
a direct comparison between the two methods is, unfortunately,
impossible. Nevertheless, it is possible to examine the set of
interconnections that CFS mapped to, for example, CoreSite
LAX, one of our target colo facilities, and check how CFS’s
results compare to mi?’s findings about the interconnections
in that colo.

To this end, we obtained from the authors of [[15] a set
of traceroutes that their CF'S method relied on to map 317
private IP-level interconnections to the same facility that we
targeted with our LAX campaign. Each of these CFS-provided
interconnections is represented by the near-side IP and its
associated AS as well as the far-side AS (note that CFS does
not provide the far-side IP for an inferred interconnection).
Since mi? intends to exhaustively map the interconnections
inside a given target facility, for all practical purposes (and
not accounting for possible churn due to the misaligned time
periods of the two studies or for a possible lack of suitably-
located VPs), mi2? should be able to detect all these 317 CFS-
provided interconnections and pin them to the CoreSite LAX
campus.

To examine what mi? has to say about these 317 CFS-
mapped interconnections, we first noticed that these intercon-
nections are associated with 89 unique near-side IP addresses
that can be divided into two groups. The first group consists
of 43 near-side IP addresses (associated with 167 of the 317
interconnections) that both CFS and mi? observed. 37 of them
(associated with 137 out of the 167 interconnections) are also
near-side IP addresses of an mi2-inferred interconnection. mi?’s
pinning algorithm marks 36 of those 37 IP addresses as “hit”
and the remaining one as “close call”. Moreover, mi? agrees
with the CFS-provided AS owner for all of these 37 near-side
IP addresses. The two methods by and large, however, disagree
about the far-side AS owner (for 130 out of 137). We note that
there is another group of IPs that are mutually visible to both
CFS and mi? but are identified as near-side IPs only by mi?
since their AS owners are determined based on our heuristics
(not BGP data). Considering this group of IP addresses further
decreases the alignment of inferred near-side IPs for mutually
visible IPs.

The second group consists of the remaining 46 IP addresses
that are only observed by CFS. Given that these 46 near-side
IP addresses were not seen in any of mi?’s traceroutes, we
leveraged the MAP-IT tool [91] to try and gain further insight.
Observe that the MAP-IT and CFS-provided interconnections,
however, are not comparable at the IP level since CFS only
provides the near-side IP while MAP-IT only identifies the
far-side IP of an interconnection. The inferred AS owners of
the near-side IP addresses of interconnections, however, are
comparable since that data is provided by both methods. Inter-
estingly, when we executed MAP-IT with the adjacency matrix
resulting from the CFS-provided traceroutes, we observed that

MAP-IT and CFS agreed on the AS owner for only one of
these 46 near-side IP addresses. This empirical finding suggests
that, by simply relying on BGP-inferred AS owners, CFS
incorrectly infers these near-side IP addresses as part of the
interconnections it mapped. In contrast, by leveraging different
types of additional interface-related information, MAP-IT- and
miZ2-based IP-to-AS mapping efforts are capable of changing
the default BGP-derived AS ownership of interfaces, and, as
discussed in Section they do so occasionally (MAP-IT) or
frequently (mi?). This example highlights the diligence that is
necessary for accurately inferring and pinning interconnections.



	Introduction
	Related Work
	Our Approach in a Nutshell
	Inferring Interconnections
	Problem Formulation
	Identifying Individual Routers
	Determining Owner AS of Routers
	Accurate Interconnection Accounting

	Pinning Interconnections
	Identifying Anchor Interfaces
	Encoding Co-presence Rules
	MRF Model Construction
	Probabilistic Inference for Pinning

	Results and Comparisons
	Validation Efforts
	On Accuracy of mi2
	On Completeness of mi2

	Summary and Outlook
	Acknowledgment
	References
	Biographies
	Reza Motamedi
	Bahador Yeganeh
	Balakrishnan Chandrasekaran
	Reza Rejaie
	Bruce Maggs
	Walter Willinger

	Appendix A: Details of the MRF Graphical Model
	Appendix B: Sensitivity and Accuracy of BP-based Pinning
	Appendix C: Comparison of mi2 with Other Approaches

