
DEMO: An Open Research Framework
for Optical Data Center Networks

Yiming Lei
Max Planck Institute for Informatics

Federico De Marchi
Max Planck Institute for Informatics

Raj Joshi
Harvard University

Jialong Li
Max Planck Institute for Informatics

Balakrishnan Chandrasekaran
Vrije Universiteit Amsterdam

Yiting Xia
Max Planck Institute for Informatics

ABSTRACT
Optical data center networks (DCNs) have emerged as a promising
design for cloud network infrastructure. However, research in this
field is constrained by the requirement for specialized hardware
and software stacks and the high engineering barriers of building
optical testbeds. To address these challenges, we present an experi-
mental platform that can realize diverse optical DCN architectures
in a plug-and-play manner. We demonstrate the ease of realizing
different architectures with Python scripts and show performance
comparisons of running end-to-end cloud applications.

CCS CONCEPTS
• Networks → Data center networks; Programmable net-
works; Network experimentation;

KEYWORDS
Data Center Networks, Optical Networks
ACM Reference Format:
Yiming Lei, Federico De Marchi, Raj Joshi, Jialong Li, Balakrishnan Chan-
drasekaran, and Yiting Xia. 2024. DEMO: An Open Research Framework for
Optical Data Center Networks. In ACM SIGCOMM 2024 Conference (ACM
SIGCOMM Posters and Demos ’24), August 4–8, 2024, Sydney, NSW, Australia.
ACM, New York, NY, USA, 3 pages. https://doi.org/10.1145/3672202.3673712

1 INTRODUCTION
Optical data center networks (DCNs) have arisen as a promising
cloud network infrastructure design in the post Moore’s law era
for merchant silicon. Over the years, numerous optical DCN ar-
chitectures using different optical switching hardware have been
proposed [4, 6–11, 15–17, 19–22, 24–26], particularly the recent
trend of traffic-oblivious optical DCNs that use high-speed opti-
cal circuit switches (OCSes) to rotate circuit connections between
Top-of-Rack switches (ToRs) according to a predefined topology
schedule [4, 5, 16, 17].

However, network and system research for optical DCNs is fun-
damentally constrained by the underlying optical hardware. For
one thing, each optical DCN architecture requires specialized hard-
ware and software stacks, obscuring innovation across domains.
For another, due to the high engineering barrier of building optical

SIGCOMM ’24, 2024, Sydney
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0717-9/24/08.
https://doi.org/10.1145/3672202.3673712

Table 1: Framework User APIs.

Category APIs

Topology

connect(ToR1, port1, ToR2, port2, slice)
round_robin(#ToRs, #ports)
round_robin_offset(#ToRs, #ports)
round_robin_dimension(#ToRs, #ports, h)

Routing

routing(routing_fn) fn_direct(src, dst, slice)
neighbors(ToR, slice) fn_vlb(src, dst, slice)
earliest_path(src, dst, fn_ebs(src, dst, slice)
slice, max_hop) fn_opera(src, dst, slice)

entries(paths, lookup_type, fn_hoho(src, dst, slice)
multipath_policy) fn_ucmp(src, dst, slice)

Monitoring
buffer_usage(ToR)
bandwidth_usage(ToR, port)
drop_rate(ToR)

testbeds, evaluation of architecture-specific software solutions has
to rely on home-grown simulators [4, 5, 16] or limited host-based
emulation without an actual network fabric [18].

This work aims to bridge the gap between the diverse optical
DCNs architectures and the lack of a unified experimental plat-
form. We present a general framework that enables the plug-and-
play realization of different optical architectures. Towards that,
we abstract the fundamental building blocks for optical DCNs, in-
cluding a programmable ToR system, a connection toolbox, and
a network management plane with configuration and monitoring
APIs. We demonstrate the simplicity of realizing different optical
architectures with customized topology and routing using Python
scripts of approximately 50 lines of code. We also show side-by-side
performance comparisons of software solutions across hardware
architectures running end-to-end cloud applications.

2 USER API
We define API functions, as listed in Table 1, for users to program
high-level network protocols as Python scripts without worrying
about the low-level system implementation.
Topology APIs. The primitive function for topology configura-
tion is connect( ). It adds an optical circuit between two ToRs through
their ports in a time slice when the circuit stays still. Using this prim-
itive, we provide built-in functions to generate topology schedules
for existing optical DCN architectures, including the round-robin
schedule enumerating connections across ToR pairs [4, 17], and
round-robin variants such as the Opera [16] schedule with a port off-
set in circuit rotation and ℎ-dimensional round-robin in EBS [3, 23].
Users can define customized topology schedules in the same way,
such as the random connections exemplified in Code 1c. Our frame-
work compiles the user-defined schedule into OCS connections and
guides the optical controller to set them up in specified time slices.

86

This work is licensed under a Creative Commons Attribution‐NonCommercial‐
ShareAlike International 4.0 License.

https://doi.org/10.1145/3672202.3673712
https://doi.org/10.1145/3672202.3673712
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3672202.3673712&domain=pdf&date_stamp=2024-08-05


SIGCOMM ’24, 2024, Sydney Lei et al.

Behavioral-
model

Programmable 
Switch

Real/Emulated
Optical Switch

Mininet
Optical Switch

Fabric Plane

Management Plane

Device
Emulation Instance

Connection

Routing
Tables

Topology 
Schedule

Testbed Instance

Device
States

Network
States

Topology 
Generator

Topology 
Config

Routing 
Generator

User-defined 
Routing

Device 
Monitor

Device
Info

Traffic 
Monitor

Network
Info

User API

Figure 1: System diagram.

(a) Steps to set up a network.

(b) Realizing VLB routing.

(c) Realizing random connections.

Code 1: Code snippets of network applications using the APIs.

Routing APIs. Despite the diversity of routing algorithms for
optical DCNs, we define a signature prototype, routing_fn( ), that
returns a set of paths for a prospective packet from a source ToR
to a destination ToR in a particular time slice. The prototype is
passed to routing( ) to generate all paths for all source-destination
pairs in all time slices. We materialize the prototype for existing
routing algorithms, including direct-path [17], VLB [4, 17], EBS [3,
23], Opera [16], HOHO [14], and UCMP [13], and allow users to
implement customized routings following the signature format.

We also provide helper functions: neighbors( ) that returns con-
nected neighbors for a ToR in a time slice, and earliest_path( ) that
returns the first path between a source ToR and a destination ToR
since a given time slice. As maximizing throughput and minimiz-
ing latency are common objectives for optical DCNs, these helper
functions serve as building blocks for specific routing algorithms,
and Code 1b shows how VLB routing is implemented with them.

Finally, we offer entries( ) to translate paths into lookup table en-
tries and load them onto each ToR. The framework supports source
routing and per-hop lookup, with entries compiled accordingly.
For multi-path routing, runtime path selection policy is needed.
We enable random [4], flow-size-based [13], and queue-occupancy-
based [3, 4] selection as required by existing routing algorithms.
Monitoring APIs. Our framework also exposes telemetry APIs
for monitoring the network performance, such as the buffer usage,
bandwidth usage, and packet drop rate of a ToR, and we will extend
them as future requirements arise.

3 FRAMEWORK DESIGN
Fig. 1 illustrates the system diagram for our framework. It consists of
the management plane and the fabric plane. The management plane
is responsible for network configuration and monitoring, through
the user APIs described in §2. The fabric plane mainly comprises
the ToR system implemented on programmable switches, along
with connectivity management of the OCSes and the integral host
system. The host system uses the VMA [2] high-performance user-
space library to implement flow pausing [17] and flow aging [13]
as required by some routing algorithms.

Our framework can operate in either a testbed environment with
actual devices or an emulation environment on Mininet, lowering
the hardware barrier for researchers and students. The testbed
mode supports various types of OCSes, as well as emulated ones
over programmable switches.

As the key component of the framework, the ToR system realizes
three major functionalities: (1) time synchronization, (2) routing

lookup, and (3) time-scheduled packet forwarding. For (1), we syn-
chronize the ToRs with the optical controller over the varying
optical circuits and achieve 28ns sync accuracy. For (2), we abstract
a generic routing table format that matches a packet’s arrival time
slice and destination ToR to determine the departure time slice and
egress port for sending the packet. For (3), we leverage the queue
pausing feature of Tofino2 switches [12] to buffer packets when
the departure time slice is later than the arrival time slice.

4 DEMONSTRATION
We demonstrate our framework on a testbed with 3 Intel Tofino2
switches and 4 servers, each with a ConnectX-6 dual-port NIC. We
virtualize 2 physical switches into 4 logical ToRs each, and create
2 virtual hosts on each server by splitting the NIC interfaces into
separate namespaces. To support various optical DCN architectures,
we emulate OCSes on a Tofino2 switch with tunable time slice
durations. Our setup thus contains 8 logical ToRs, each connected
to a logical host with a 100Gbps downlink and to the OCSes with 4
10Gbps uplinks to mimic oversubscription in production DCNs.
Architecture implementation with the user APIs. We first
demonstrate how our framework simplifies the implementation of
optical DCN architectures. As shown in Code 1a, an architecture
can be populated with just a few lines of Python code by calling API
functions for the topology and routing schemes. We demonstrate
the effect of each line of code, by visualizing the generated topology
schedule and showing the lookup entries loaded to each ToR.

Code 1b and 1c dive into the implementation of topology and
routing functions. In Code 1b, the built-in API fn_vlb( ) realizes two-
hop routing. Hop 1 is via possible ToRs directly connected to the
source, obtained using neighbors( ). Hop 2 is over the earliest direct
circuit from each intermediate ToR to the destination, by calling
earliest_path( ). Code 1c shows a self-defined topology function
to create random connections throughout time slices, by drawing
randomly from unused ports and adding circuits through connect( ).
Side-by-side comparison running applications. We imple-
ment existing topology and routing methods as shown above and
perform side-by-side performance comparisons between then with
real applications. We generate latency-sensitive traffic with Mem-
cached [1] and generate throughput-intensive traffic with iPerf.
The framework enables logging of traffic statistics, such as flow
completion times (FCTs). We demonstrate FCT distributions across
different routing solutions. We observe that under 50𝜇s time slices,
HOHO exhibits 27% and 88% reduction in 99th percentile FCT for
Memcached traffic compared to Opera and VLB, respectively.

87



DEMO: An Open Research Framework for Optical Data Center Networks SIGCOMM ’24, 2024, Sydney

REFERENCES
[1] [n. d.]. Memchached. https://memcached.org/. ([n. d.]).
[2] 2024. Mellanox Messaging Accelerator. https://github.com/Mellanox/libvma/

blob/master/README. (2024).
[3] Daniel Amir, Tegan Wilson, Vishal Shrivastav, Hakim Weatherspoon, Robert

Kleinberg, and Rachit Agarwal. 2022. Optimal oblivious reconfigurable net-
works. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of
Computing. 1339–1352.

[4] Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, et al.
2020. Sirius: A flat datacenter network with nanosecond optical switching. In
Proceedings of the Annual conference of the ACM Special Interest Group on Data
Communication on the applications, technologies, architectures, and protocols for
computer communication. 782–797.

[5] Joshua L Benjamin, ThomasGerard, Domaniç Lavery, Polina Bayvel, andGeorgios
Zervas. 2020. PULSE: optical circuit switched data center architecture operating
at nanosecond timescales. Journal of Lightwave Technology 38, 18 (2020), 4906–
4921.

[6] Kai Chen, Ankit Singla, Atul Singh, Kishore Ramachandran, Lei Xu, Yueping
Zhang, Xitao Wen, and Yan Chen. 2013. OSA: An optical switching architecture
for data center networks with unprecedented flexibility. IEEE/ACM Transactions
on Networking 22, 2 (2013), 498–511.

[7] Kai Chen, Xitao Wen, Xingyu Ma, Yan Chen, Yong Xia, Chengchen Hu, and Qun-
feng Dong. 2015. WaveCube: A scalable, fault-tolerant, high-performance optical
data center architecture. In 2015 IEEE Conference on Computer Communications
(INFOCOM). IEEE, 1903–1911.

[8] Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao,
and Shan Zhong. 2017. EnablingWide-Spread Communications on Optical Fabric
with MegaSwitch. In 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). 577–593.

[9] Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajabdolali
Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and Amin
Vahdat. 2010. Helios: a hybrid electrical/optical switch architecture for modular
data centers. In Proceedings of the ACM SIGCOMM 2010 Conference. 339–350.

[10] Monia Ghobadi, Ratul Mahajan, Amar Phanishayee, Nikhil Devanur, Janard-
han Kulkarni, Gireeja Ranade, Pierre-Alexandre Blanche, Houman Rastegarfar,
Madeleine Glick, and Daniel Kilper. 2016. Projector: Agile reconfigurable data
center interconnect. In Proceedings of the 2016 ACM SIGCOMM Conference. 216–
229.

[11] Mehrdad Khani, Manya Ghobadi, Mohammad Alizadeh, Ziyi Zhu, Madeleine
Glick, Keren Bergman, Amin Vahdat, Benjamin Klenk, and Eiman Ebrahimi. 2021.
SiP-ML: high-bandwidth optical network interconnects for machine learning
training. In Proceedings of the 2021 ACM SIGCOMM 2021 Conference. 657–675.

[12] Jeongkeun Lee. 2020. Advanced congestion & flow control with programmable
switches. In P4 Expert Roundtable Series. https://bit.ly/3J8x7fw

[13] Jialong Li, Haotian Gong, Federico De Marchi, Aoyu Gong, Yiming Lei, Wei Bai,
and Yiting Xia. [n. d.]. Uniform-Cost Multi-Path Routing for Reconfigurable Data
Center Networks. In Proceedings of the ACM SIGCOMM 2024 Conference.

[14] Jialong Li, Yiming Lei, Federico De Marchi, Raj Joshi, Balakrishnan Chan-
drasekaran, and Yiting Xia. 2022. Hop-On Hop-Off Routing: A Fast Tour across
the Optical Data Center Network for Latency-Sensitive Flows. In Proceedings of
the 6th Asia-Pacific Workshop on Networking. 63–69.

[15] Yunpeng James Liu, Peter Xiang Gao, Bernard Wong, and Srinivasan Keshav.
2014. Quartz: a new design element for low-latency DCNs. ACM SIGCOMM
Computer Communication Review 44, 4 (2014), 283–294.

[16] William M Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C Snoeren,
and George Porter. 2020. Expanding across time to deliver bandwidth efficiency
and low latency. In 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20). 1–18.

[17] William M Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,
Alex C Snoeren, and George Porter. 2017. Rotornet: A scalable, low-complexity,
optical datacenter network. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. 267–280.

[18] Matthew K. Mukerjee, Christopher Canel, Weiyang Wang, Daehyeok Kim, Srini-
vasan Seshan, and Alex C. Snoeren. 2020. Adapting TCP for Reconfigurable
Datacenter Networks. In 17th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 20). USENIX Association, Santa Clara, CA, 651–666.
https://www.usenix.org/conference/nsdi20/presentation/mukerjee

[19] George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-
Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat. 2013.
Integrating microsecond circuit switching into the data center. ACM SIGCOMM
Computer Communication Review 43, 4 (2013), 447–458.

[20] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq,
Rui Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble,
et al. 2022. Jupiter evolving: transforming google’s datacenter network via optical
circuit switches and software-defined networking. In Proceedings of the ACM
SIGCOMM 2022 Conference. 66–85.

[21] Guohui Wang, David G Andersen, Michael Kaminsky, Konstantina Papagiannaki,
TS Eugene Ng, Michael Kozuch, and Michael Ryan. 2010. c-Through: Part-time
optics in data centers. In Proceedings of the ACM SIGCOMM 2010 Conference.
327–338.

[22] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Zhijao Jia, Dheevatsa Mudi-
gere, Ying Zhang, Anthony Kewitsch, and Manya Ghobadi. 2022. TopoOpt:
Optimizing the Network Topology for Distributed DNN Training. arXiv preprint
arXiv:2202.00433 (2022).

[23] Tegan Wilson, Daniel Amir, Vishal Shrivastav, Hakim Weatherspoon, and Robert
Kleinberg. 2023. Extending optimal oblivious reconfigurable networks to all n. In
2023 Symposium on Algorithmic Principles of Computer Systems (APOCS). SIAM,
1–16.

[24] Dingming Wu, Yiting Xia, Xiaoye Steven Sun, Xin Sunny Huang, Simbarashe
Dzinamarira, and TS Eugene Ng. 2018. Masking failures from application perfor-
mance in data center networks with shareable backup. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication. 176–190.

[25] Yiting Xia, Mike Schlansker, TS Eugene Ng, and Jean Tourrilhes. 2015. Enabling
Topological Flexibility for Data Centers Using OmniSwitch.. In HotCloud.

[26] Yiting Xia, Xiaoye Steven Sun, Simbarashe Dzinamarira, Dingming Wu,
Xin Sunny Huang, and TS Eugene Ng. 2017. A tale of two topologies: Exploring
convertible data center network architectures with flat-tree. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. 295–308.

88

https://memcached.org/
https://github.com/Mellanox/libvma/blob/master/README
https://github.com/Mellanox/libvma/blob/master/README
https://bit.ly/3J8x7fw
https://www.usenix.org/conference/nsdi20/presentation/mukerjee

	Abstract
	1 Introduction
	2 User API
	3 Framework Design
	4 Demonstration
	References

