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ABSTRACT
Optical data center networks (DCNs) have emerged as a promising
design for cloud network infrastructure. However, research in this
field is constrained by the requirement for specialized hardware
and software stacks and the high engineering barriers of building
optical testbeds. To address these challenges, we present an experi-
mental platform that can realize diverse optical DCN architectures
in a plug-and-play manner. We demonstrate the ease of realizing
different architectures with Python scripts and show performance
comparisons of running end-to-end cloud applications.
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1 INTRODUCTION
Optical data center networks (DCNs) have arisen as a promising
cloud network infrastructure design in the post Moore’s law era
for merchant silicon. Over the years, numerous optical DCN ar-
chitectures using different optical switching hardware have been
proposed [4, 6–11, 15–17, 19–22, 24–26], particularly the recent
trend of traffic-oblivious optical DCNs that use high-speed opti-
cal circuit switches (OCSes) to rotate circuit connections between
Top-of-Rack switches (ToRs) according to a predefined topology
schedule [4, 5, 16, 17].

However, network and system research for optical DCNs is fun-
damentally constrained by the underlying optical hardware. For
one thing, each optical DCN architecture requires specialized hard-
ware and software stacks, obscuring innovation across domains.
For another, due to the high engineering barrier of building optical
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Table 1: Framework User APIs.

Category APIs

Topology

connect(ToR1, port1, ToR2, port2, slice)
round_robin(#ToRs, #ports)
round_robin_offset(#ToRs, #ports)
round_robin_dimension(#ToRs, #ports, h)

Routing

routing(routing_fn) fn_direct(src, dst, slice)
neighbors(ToR, slice) fn_vlb(src, dst, slice)
earliest_path(src, dst, fn_ebs(src, dst, slice)
slice, max_hop) fn_opera(src, dst, slice)

entries(paths, lookup_type, fn_hoho(src, dst, slice)
multipath_policy) fn_ucmp(src, dst, slice)

Monitoring
buffer_usage(ToR)
bandwidth_usage(ToR, port)
drop_rate(ToR)

testbeds, evaluation of architecture-specific software solutions has
to rely on home-grown simulators [4, 5, 16] or limited host-based
emulation without an actual network fabric [18].

This work aims to bridge the gap between the diverse optical
DCNs architectures and the lack of a unified experimental plat-
form. We present a general framework that enables the plug-and-
play realization of different optical architectures. Towards that,
we abstract the fundamental building blocks for optical DCNs, in-
cluding a programmable ToR system, a connection toolbox, and
a network management plane with configuration and monitoring
APIs. We demonstrate the simplicity of realizing different optical
architectures with customized topology and routing using Python
scripts of approximately 50 lines of code. We also show side-by-side
performance comparisons of software solutions across hardware
architectures running end-to-end cloud applications.

2 USER API
We define API functions, as listed in Table 1, for users to program
high-level network protocols as Python scripts without worrying
about the low-level system implementation.
Topology APIs. The primitive function for topology configura-
tion is connect( ). It adds an optical circuit between two ToRs through
their ports in a time slice when the circuit stays still. Using this prim-
itive, we provide built-in functions to generate topology schedules
for existing optical DCN architectures, including the round-robin
schedule enumerating connections across ToR pairs [4, 17], and
round-robin variants such as the Opera [16] schedule with a port off-
set in circuit rotation and ℎ-dimensional round-robin in EBS [3, 23].
Users can define customized topology schedules in the same way,
such as the random connections exemplified in Code 1c. Our frame-
work compiles the user-defined schedule into OCS connections and
guides the optical controller to set them up in specified time slices.
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Figure 1: System diagram.

(a) Steps to set up a network.

(b) Realizing VLB routing.

(c) Realizing random connections.

Code 1: Code snippets of network applications using the APIs.

Routing APIs. Despite the diversity of routing algorithms for
optical DCNs, we define a signature prototype, routing_fn( ), that
returns a set of paths for a prospective packet from a source ToR
to a destination ToR in a particular time slice. The prototype is
passed to routing( ) to generate all paths for all source-destination
pairs in all time slices. We materialize the prototype for existing
routing algorithms, including direct-path [17], VLB [4, 17], EBS [3,
23], Opera [16], HOHO [14], and UCMP [13], and allow users to
implement customized routings following the signature format.

We also provide helper functions: neighbors( ) that returns con-
nected neighbors for a ToR in a time slice, and earliest_path( ) that
returns the first path between a source ToR and a destination ToR
since a given time slice. As maximizing throughput and minimiz-
ing latency are common objectives for optical DCNs, these helper
functions serve as building blocks for specific routing algorithms,
and Code 1b shows how VLB routing is implemented with them.

Finally, we offer entries( ) to translate paths into lookup table en-
tries and load them onto each ToR. The framework supports source
routing and per-hop lookup, with entries compiled accordingly.
For multi-path routing, runtime path selection policy is needed.
We enable random [4], flow-size-based [13], and queue-occupancy-
based [3, 4] selection as required by existing routing algorithms.
Monitoring APIs. Our framework also exposes telemetry APIs
for monitoring the network performance, such as the buffer usage,
bandwidth usage, and packet drop rate of a ToR, and we will extend
them as future requirements arise.

3 FRAMEWORK DESIGN
Fig. 1 illustrates the system diagram for our framework. It consists of
the management plane and the fabric plane. The management plane
is responsible for network configuration and monitoring, through
the user APIs described in §2. The fabric plane mainly comprises
the ToR system implemented on programmable switches, along
with connectivity management of the OCSes and the integral host
system. The host system uses the VMA [2] high-performance user-
space library to implement flow pausing [17] and flow aging [13]
as required by some routing algorithms.

Our framework can operate in either a testbed environment with
actual devices or an emulation environment on Mininet, lowering
the hardware barrier for researchers and students. The testbed
mode supports various types of OCSes, as well as emulated ones
over programmable switches.

As the key component of the framework, the ToR system realizes
three major functionalities: (1) time synchronization, (2) routing

lookup, and (3) time-scheduled packet forwarding. For (1), we syn-
chronize the ToRs with the optical controller over the varying
optical circuits and achieve 28ns sync accuracy. For (2), we abstract
a generic routing table format that matches a packet’s arrival time
slice and destination ToR to determine the departure time slice and
egress port for sending the packet. For (3), we leverage the queue
pausing feature of Tofino2 switches [12] to buffer packets when
the departure time slice is later than the arrival time slice.

4 DEMONSTRATION
We demonstrate our framework on a testbed with 3 Intel Tofino2
switches and 4 servers, each with a ConnectX-6 dual-port NIC. We
virtualize 2 physical switches into 4 logical ToRs each, and create
2 virtual hosts on each server by splitting the NIC interfaces into
separate namespaces. To support various optical DCN architectures,
we emulate OCSes on a Tofino2 switch with tunable time slice
durations. Our setup thus contains 8 logical ToRs, each connected
to a logical host with a 100Gbps downlink and to the OCSes with 4
10Gbps uplinks to mimic oversubscription in production DCNs.
Architecture implementation with the user APIs. We first
demonstrate how our framework simplifies the implementation of
optical DCN architectures. As shown in Code 1a, an architecture
can be populated with just a few lines of Python code by calling API
functions for the topology and routing schemes. We demonstrate
the effect of each line of code, by visualizing the generated topology
schedule and showing the lookup entries loaded to each ToR.

Code 1b and 1c dive into the implementation of topology and
routing functions. In Code 1b, the built-in API fn_vlb( ) realizes two-
hop routing. Hop 1 is via possible ToRs directly connected to the
source, obtained using neighbors( ). Hop 2 is over the earliest direct
circuit from each intermediate ToR to the destination, by calling
earliest_path( ). Code 1c shows a self-defined topology function
to create random connections throughout time slices, by drawing
randomly from unused ports and adding circuits through connect( ).
Side-by-side comparison running applications. We imple-
ment existing topology and routing methods as shown above and
perform side-by-side performance comparisons between then with
real applications. We generate latency-sensitive traffic with Mem-
cached [1] and generate throughput-intensive traffic with iPerf.
The framework enables logging of traffic statistics, such as flow
completion times (FCTs). We demonstrate FCT distributions across
different routing solutions. We observe that under 50𝜇s time slices,
HOHO exhibits 27% and 88% reduction in 99th percentile FCT for
Memcached traffic compared to Opera and VLB, respectively.
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