
Curing Regular Expressions Matching Algorithms
from Insomnia, Amnesia, and Acalculia

Sailesh Kumar, Balakrishnan Chandrasekaran,
Jonathan Turner
Washington University

George Varghese
University of California, San Diego

ABSTRACT
The importance of network security has grown tremendously and a
collection of devices have been introduced, which can improve the
security of a network. Network intrusion detection systems (NIDS)
are among the most widely deployed such system; popular NIDS
use a collection of signatures of known security threats and viruses,
which are used to scan each packet’s payload. Today, signatures are
often specified as regular expressions; thus the core of the NIDS
comprises of a regular expressions parser; such parsers are
traditionally implemented as finite automata. Deterministic Finite
Automata (DFA) are fast, therefore they are often desirable at high
network link rates. DFA for the signatures, which are used in the
current security devices, however require prohibitive amounts of
memory, which limits their practical use.

In this paper, we argue that the traditional DFA based NIDS has
three main limitations: first they fail to exploit the fact that normal
data streams rarely match any virus signature; second, DFAs are
extremely inefficient in following multiple partially matching
signatures and explodes in size, and third, finite automaton are
incapable of efficiently keeping track of counts. We propose
mechanisms to solve each of these drawbacks and demonstrate that
our solutions can implement a NIDS much more securely and
economically, and at the same time substantially improve the packet
throughput.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General – Security
and protection (e.g., firewalls)

General Terms
Algorithms, Design, Security.

Keywords
DFA, regular expressions, deep packet inspection.

1. INTRODUCTION
Network security has recently received an enormous attention due to
the mounting security concerns in today’s networks. A wide variety
of algorithms have been proposed which can detect and combat with

these security threats. Among all these proposals, signature based
Network Intrusion Detection Systems (NIDS) have become a
commercial success and have seen a widespread adoption. A
signature based NIDS maintains signatures, which characterizes the
profile of known security threats (e.g. a virus, or a DoS attack).
These signatures are used to parse the data streams of various flows
traversing through the network link; when a flow matches a
signature, appropriate action is taken (e.g. block the flow or rate
limit it). Traditionally, security signatures have been specified as
string based exact match, however regular expressions are now
replacing them due to their superior expressive power and
flexibility.
When regular expressions are used to specify the signatures in a
NIDS, then finite automaton are typically employed to implement
them. There are two types of finite automaton: Nondeterministic
Finite Automaton (NFA) and Deterministic Finite Automaton
(DFA) [2]. Unlike NFA, DFA requires only one state traversal per
character thereby yielding higher parsing rates. Additionally, DFA
maintains a single state of execution which reduces the “per flow”
parse state maintained due to the packet multiplexing in network
links. Consequently, DFA is the preferred method.
DFAs are fast, however for the current sets of regular expressions,
they require prohibitive amounts of memory. Current solutions often
divide a signature set into multiple subsets, and construct a DFA for
each of them. However, multiple DFAs require multiple state
traversals which reduce the throughput, and increase the “per flow”
parse state. Large “per flow” parse state may also create a
performance bottleneck because they may have be loaded and
stored for every packet due to the packet multiplexing.
The problems associated with the traditional DFA based regular
expressions stems from three prime factors. First, they take no
interest in exploiting the fact that normal data streams rarely match
more than first few symbols of any signature. In such situations, if
one constructs a DFA for the entire signatures, then most portions of
the DFA will be unvisited, thus the approach of keeping the entire
automaton active appears wasteful; we call this deficiency insomnia.
Second, a DFA usually maintains a single state of execution, due to
which it is unable to efficiently follow the progress of multiple
partial matches. They employ a separate state for each such
combination of partial match, thus the number of states can explode
combinatorially. It appears that if one equips an automaton with a
small auxiliary memory which it will use to register the events of
partial matches, then a combinatorial explosion can be avoided; we
refer to this implement a 32-bit counter. We call this deficiency
acalculia.
In this paper, we propose solutions to tackle each of these three
drawbacks. We propose mechanisms to split signatures such that,
only one portion needs to remain active, while the remaining
portions can be put to sleep under normal conditions. We also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS'07, December 3–4, 2007, Orlando, Florida, USA.
Copyright 2007 ACM 978-1-59593-945-6/07/0012...$5.00.

155

propose a cure to amnesia, by introducing a new machine, which is
as fast as DFA, but requires much fewer number of states. Our final
cure to acalculia extends this machine, so that it can handle events
of counting much more efficiently.
The remainder of the paper is organized as follows. Due to space
limitation, background is presented in the technical report [35].
Section 2 explains the drawbacks of traditional implementations.
Our cure to insomnia is presented in Section 3. Section 4 presents
the cure to amnesia, and section 5 presents the cure to acalculia.
Section 6 reports the results, and the paper concludes in Section 7.

2. Regular Expressions in Networking
Any implementation of regular expressions in networking has to
deal with several complications. The first complication arises due to
multiplexing of packets in the network links. Since packets
belonging to different flows can arrive interspersed with each other,
any pattern matcher has to de-multiplex these packets and
reassemble the data stream of various flows before parsing them. As
a consequence, the architecture must maintain the parse state after
parsing any packet. Upon a switch from a flow x to a flow y, the
machine will first store the parse state of the current flow x and load
the parse state of the last packet of the flow y.
Consequently, it is critical to limit the parse state associated with the
pattern matcher because at high speed backbone links, the number
of flows can reach up to a million. NFAs are therefore not desirable
in spite of being compact, because they can have a large number of
active states. On the other hand, DFA requires a single active state;
thus the amount of parse state remains small.
The second complication arises due to the high network link rates.
In a 10 Gbps network link, a payload byte usually arrives every
nano-second. Thus, a parser running at 1GHz clock rate will have a
single clock cycle to process each input byte. NFAs are unlikely to
maintain such parsing speeds because they often require multiple
state traversals for an input byte; thus DFAs appear to be the only
resort. Due to these complications, one can conclude that a pattern
matching machine for networking applications must satisfy these
dual objectives i) fast parsing rates or few transitions per input byte,
and ii) less “per flow” state.
Although, DFAs appear to meet both of these goals, they often
suffer from state explosion, i.e. the total number of states in a DFA
can be exponential in the length of the regular expression. The
problems with a DFA based approach can be divided into the
following three main categories.

2.1 Three Key Problems of Finite Automata
In this section, we introduce the three deficiencies of traditional
finite automata based regular expressions approach:
1. Traditional regular expressions implementations often employ the
complete signatures to parse the input data. However, in NIDS
applications, the likelihood that a normal data stream completely
matches a signature is low. Traditional approach therefore appears
wasteful; rather, the tail portions of the signatures can be isolated
from the automaton, and put to sleep during normal traffic and
woken up only when they are needed. We call this inability of the
traditional approach Insomnia. The number of states in a machine
suffering from insomnia may unnecessarily bloat up; the problem
becomes more severe when the tail portion is relatively complex
and long. We present an effective cure to insomnia in section 3.
2. The second deficiency, which is specific to DFAs, can be
classified as Amnesia. In amnesia, a DFA has limited memory; thus

it only remembers a single state of parsing and ignores everything
about the earlier parse and the associated partial matches. Due to
this tendency, DFAs may require a large number of states to track
the progress of both the current match as well as any previous
partial match. Although amnesia keeps the per flow state required
during the parse small, it often causes an explosion in the number of
states, because a separate state is required to indicate every possible
combination of partial match. Intuitively, a machine which has a
few flags in addition to its current state of execution can utilize
these flags to track multiple matches more efficiently and avoid
state explosions. We propose such a machine in section 4, which
efficiently cures DFAs from amnesia.

3. The third deficiency of the finite automata can be tagged with the
label Acalculia due to which it (both NFA and DFA) is unable to
efficiently count the occurrences of certain sub-expressions in the
input stream. Thus, whenever a regular expression contains a length
restriction of k on a sub-expression, the number of states required by
the sub-expression gets multiplied by k. With length restrictions, the
number of states in a NFA increases linearly, while in a DFA, it
may increase exponentially. It is desirable to construct a machine
which is capable of counting certain events, and uses this capability
to avoid the state explosion. We propose such machines in section 5.
We now proceed with our cures to these three deficiencies. Our first
solution is cure from insomnia.

3. Curing DFA from Insomnia
Traditional approach of pattern matching constructs an automaton
for the entire regular expression (reg-ex) signature, which is used to
parse the input data. However, in NIDS applications, normal flows
rarely match more than first few symbols of any signature. Thus, the
traditional approach appears wasteful; the automaton unnecessarily
bloats up in size as it attempts to represent the entire signature even
though the tail portions are rarely visited. Rather, the tail portions
can be isolated from the automaton, and put to sleep during normal
traffic conditions and woken up only when they are needed. Since
the traditional approach is unable to perform such selective sleeping
and keeps the automaton awake for the entire signature, we call this
deficiency insomnia.

In other words, insomnia can be viewed as the inability of the
traditional pattern matchers to isolate frequently visited portions of a
signature from the infrequent ones. Insomnia is dangerous due to
two reasons i) the infrequently visited tail portions of the reg-exes
are generally complex (contains closures, unions, length restrictions)
and long (more than 80% of the signature), and ii) the size of fast
representations of reg-exes (e.g. DFA) usually are exponential in the
length and complexity of an expression. Thus, without a cure from
insomnia, a DFA of hundreds of reg-exes may become infeasible or
will require enormous amounts of memory.
An obvious cure to insomnia will essentially require an isolation of
the frequently visited portions of the signatures from the infrequent
ones. Clearly, frequently visited portions must be implemented with
a fast representation like a DFA and stored in a fast memory in
order to maintain high parsing rates. Moreover, since fast memories
are less dense and limited in size, and fast representations like DFA
usually suffer from state blowup, it is vital to keep such fast
representations compact and simple. Fortunately, practical
signatures can be cleanly split into simple prefixes and suffixes,
such that the prefixes comprise of the entire frequently visited
portions of the signature. Therefore, with such a clean separation in
place, only the automaton representing the prefixes need to remain

156

active at all times; thereby, curing the traditional approach from
insomnia by keeping the suffix automaton in a sleep state most of
the times.
There is an important tradeoff involved in such a prefix and suffix
based pattern matching architecture. The general objective is to keep
the prefixes small, so that the automaton which is awake all the time
remains compact and fast. At the same time, if prefixes are too small
then normal data streams will match them often, thereby waking up
the suffixes more frequently than desired. Note that, during
abnormal conditions the automaton representing the suffixes will be
triggered more often; however, we discuss such scenarios later.
Under normal conditions, the architecture must therefore balance
the tradeoff between the simplicity of the fast automaton and the
dormancy of the slow automaton.
We refer to the automaton which represents the prefixes as the fast
path and the remaining as the slow path. Fast path remains awake
for the entire input data stream, and activates the slow path once it
finds a matching prefix. There are two expectations. First, slow path
should be triggered rarely. Second, it should process a fraction of
the input data; hence it can use a slow memory and a compact
representation like a NFA, even if it is relatively slow. In order to
meet these expectations, normal data streams must not match the
prefixes of the signatures or match them rarely. Upon a prefix
match, the slow path processing should not continue for a long time.
The likelihood that these two expectations will be met during
normal traffic conditions will depend directly upon the signatures
and the positions where they are split into prefixes and suffixes.
Thus, it is critical to decide the split positions and we describe our
procedure to compute these in the next section.

3.1 Splitting the regular expressions
The dual objectives of the splitting procedure are that the prefixes
remain as small as possible, and at the same time, the likelihood that
normal data matches these prefixes is low. The probability of
matching a prefix depends upon its length and the distribution of
various symbols in the input data. In this context, it may not be
acceptable to assume a uniform random distribution of the input
symbols (i.e. every symbol appears with a probability of 1/256)
because some words appear much more often than the others (e.g.
“HELO” in an ICMP packet). Therefore, one needs to consider a
trace driven probability distribution of various input symbols [6].
With these traces, one can compute the matching probability of
prefixes of different lengths under normal and anomalous traffic.
This will determine the rate at which slow path will be triggered.
In addition to the “matching probabilities”, it is important to
consider the probabilities of making transitions between any two
states of the automaton. This probability will determine how long
the slow path will continue processing once it is triggered. These
transition probabilities are likely to be dependent upon the previous
stream of input symbols, because there is a strong correlation
between the occurrences of various symbols, i.e. when and where

they occur with respect to each other. The transition probabilities as
well as the matching probabilities can be assigned by constructing
an NFA of the regular expressions signatures and parsing the same
against normal and anomalous traffic.
More systematically, given the NFA of each regular expression, we
determine the probability with which each state of the NFA
becomes active and the probability that the NFA takes its different
transitions. Once these probabilities are computed, we determine a
cut in the NFA graph, so that i) there are as few nodes as possible on
the left hand side of the cut, and ii) the probability that states on the
right hand side of the cut is active is sufficiently small. This will
ensure that the fast path remains compact and the slow path is
triggered only occasionally. While determining the cut, we also
need to ensure that the probability of those transitions which leaves
some NFA node on the right hand side and enters some other node
on the same side of the cut remains small. This will ensure that,
once the slow path is triggered, it will stop after processing a few
input symbols. Clearly, the cut computed from the normal traffic
traces and from the attack traffic are likely to be different, thus the
corresponding prefixes will also be different. We adopt the policy of
taking the longer prefix. More details of the cutting algorithm are
present in the technical report [35].

3.2 The bifurcated pattern matching
We now present the bifurcated pattern matching architecture. The
architecture (shown in Figure 1) consists of two components: fast
path and slow path. The fast path parses every byte of each flow and
matches them against the prefixes of all reg-exes. The slow path
parses only those flows which have found a match in the fast path,
and matches them only against the corresponding suffixes.
Notice that, the parsing of input data is performed on a per flow
basis. In order to keep parsing of each flow discrete, the “per flow
parse state” has to be stored. With millions of active flows, parse
states have to be stored in an off-chip memory, which may create a
performance bottleneck because upon any flow switch we will have
to store and load this information. With the minimum IP packet size
being 40 bytes, we may have to perform this load and store
operation every 40 ns at 10 Gbps rates. Thus, it is important to
minimize the “per flow parse states”. This minimization is critical in
the fast path because all flows are processed by the fast path. It does
not pose a similar threat to the slow path because it processes a
fraction of the payload of a small number of flows.
Consequently, the fast path automaton has two objectives: 1) it must
require small per flow parse state, and 2) it must be able to perform
parsing at high speed, in order to meet the link rates. One obvious
solution which will satisfy this dual objective is to construct a single
composite DFA of all prefixes. A composite DFA will have only
one active state per flow and will also require only one state
traversal for an input character. Thus, if there are C flows in total,
we will need C × statef memory, where statef is the bits needed to
represent a DFA state. At this point in discussion we will proceed
with a composite DFA in the fast path, later in section 4, we will
propose an alternative to a composite DFA which is more space
efficient and yet satisfies our dual objectives.
Slow path on the other hand handles, say ε fraction of the total
number of bytes processed by the fast path. Therefore, it will need
to store the parse state of εC flows on an average. If we keep ε
small, then unlike the fast path, we neither have to worry about
minimizing the “per flow parse state” nor do we have to use a fast
representation, to keep up with the link rates. Thus, a NFA may

Fast path
automaton

Fast path
state

memory

B bits/sec

Slow path
automata

Slow path memory

C

statef

εC

states

εB bits/sec

Figure 1: Fast path and slow path processing in a

bifurcated packet processing architecture.

157

suffice to represent the slow path. Nevertheless slow path offers
another key advantage, i.e. a composite automaton for all suffixes is
not required because we need to parse the flows against only those
suffixes whose prefixes have been matched.
However, there is a complication in the slow path. Slow path can be
triggered multiple times for the same flow, thus there can be
multiple instances of per flow active parse states even though we
may be using a DFA. Consider a simple example of an expression
ababcda, which is split into ab prefix and abcda suffix, and a
packet payload ”xyababcdpq”. The slow path will be triggered
twice by this packet, and there will be two instances of active parse
states in the slow path. In general it is possible that i) a single packet
triggers the slow path several times, in which case signaling
between the fast and slow path may become a bottleneck and ii)
there are multiple active states in the slow path, which will require
complicated data-structures to store the parse states.
These problems will exacerbate when the slow path will process
packets much slower than the fast path and will handle its triggers
sequentially. With the above packet, slow path will be triggered first
after the fast path parses ”xyababcdpq” and second after
”xyababcdpq”. Upon first trigger, it will parse the payload
”xyababcdpq” and stop after it sees p. Upon second trigger, it
will parse the payload ”xyababcdpq”, thus repeating the
previous parse. Due to these complications, we propose a packetized
version of bifurcated packet processing architecture.

3.3 Packetized bifurcated pattern matching
The objective of the packetized bifurcated packet processing is to
minimize the signaling between the fast path and the slow path.
More specifically if we ensure that the fast path triggers the slow
path at most once for every packet, then the slow path will not
repeat the parsing of the same packet payload. This objective can be
satisfied by slightly modifying the slow path automaton, so that it
parses the packets against the entire signature, and not just the
suffixes. With the slow path representing the entire signature, the
subsequent triggers for this signature will be captured within the
slow path. Hence, they can be ignored.
In order to better understand how the slow path is constructed and
triggered, let us consider a simple example of 3 signatures:
r1 = .*[gh]d[^g]*ge
r2 = .*fag[^i]*i[^j]*j
r3 = .*a[gh]i[^l]*[ae]c

The NFA for these signatures are shown in figure 2 (a composite
DFA for these signatures will contain 92 states). In the figure, the
probabilities with which various NFA states are activated are also
highlighted. A cut between the fast and slow path is also shown
which divides the states so that the cumulative probability of the
slow path states is less than 5%.

With this cut, the prefixes will be p1 = [gh]d[^g]*g; p2 = f; and
p3 = j[gh] and the corresponding suffixes will be s1 = e; s2 =
ag[^i]*i[^j]*j; and s3 = i[^l]*[ae]c. As highlighted in the
same figure, fast path consists of a composite DFA of the three
prefixes p1, p2, and p3, which will have only 14 states, while the
slow path comprises of three separate DFAs, one for each signature
r1, r2, and r3, rather than just the suffixes s1, s2, and s3.
Whenever the fast path will find a matching prefix, say pi in a
packet, it will trigger the corresponding slow path automaton
representing the signature ri. Once this automaton is triggered, all
subsequent triggers corresponding to the prefix pi for the signature ri
can be ignored because during the process of matching ri in the slow
path, such triggers will also be detected. Thus, for any given packet
processed in the fast path, the state of the slow path “active or
asleep” associated with each signature is maintained, so that the
subsequent triggers for any given signature can be masked out.
However, we have to be careful in initiating the of triggering the
slow path automaton representing any signature ri. Specifically, we
have to ensure that the slow path automaton begins at a state which
indicates that the prefix pi of the signature ri has already been
detected. Consider the DFA for the first signature (r1) of the above
slow path, shown in Figure 3. Instead of beginning at the usual start
state, 0 of this DFA, we begin its parsing at the state (0,1,3), which
indicates that the prefix p1 has just been detected; the parsing
continues from this point onwards in the slow path.
In general case, the start state of the slow path automaton will
depend upon the fast path DFA state which triggers the slow path.
More specifically, the slow path start state will be the minimal one
which encompasses all partial matches in the fast path.
The above procedure describes how we initiate the slow path
automaton for a prefix match in any given packet. The decision that
the slow path should remain active for the subsequent packets of the
flow depends on the state of the slow path automaton at which the
packet leaves it. If this final DFA state comprises any of the states
of the slow path NFA, then the implication is that the slow path
processing will continue; else the slow path will be put to sleep. For
example, in the Figure 3, unless the final state upon a packet parsing
is either (0,1,3) or (0,5), the subsequent packets of the flow will not
be parsed by this automaton; in other words this automaton will no
longer remain active.
Let us now consider the parsing of a packet payload ”gdgdgh”.
The fast path state traversal is illustrated below; the slow path will
be triggered twice, but the second trigger will be ignored.

11

1,03,1,02,03,1,02,01,00

rr

hgdgdg

↑↑
⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯

Upon the first trigger, the slow path DFA (shown in Figure 3) for
the signature r1 will begin its execution at the state (0,1,3) and will
parse the remaining packet payload ”dgh”. The parsing will finish
at the DFA state (0, 1). Since this state does not contain any of the
states of the slow path NFA, this slow path automaton will be put to

1 2 5d g

^g

0 g-h

*

3 e

6 7 10a g

^i

f 8 j9i

11 12 15g-h ia 13 c14a-e

^l

^j1.0

0.25 0.2 0.01 0.001

0.1 0.01 0.008 0.006 0.0006

0.1 0.02 0.016 0.008 0.0008

CUT

0

1.0

0

1.0

*

*

slow path automatafast path automaton

Figure 2: NFA and the cut between prefix and suffix

0

0, 1
g,h

^g,h

d 0, 2 0, 1, 2

0, 1, 3

g g

0, 5 e

h

^d,g,h

^d,e,g,h*

^g

"start state"

g,h

g,h d

Figure 3: DFA and start state for r1 in the slow path

158

sleep. On the other hand if the remaining packet payload were
”dge”, the packet would leave the slow path in the state (0,5).
Thus, in this case, the slow path processing will remain active for
the subsequent packets of the flow.
In contrast with the previous byte based pattern matching
architecture, the proposed packetized architecture has a drawback
that it keeps the slow path automaton active until the packet is
completely parsed in the slow path. Thus, the slow path may end up
processing many more bytes, unlike in the byte level architecture.
This drawback arises due to the difference in the processing
granularity; the byte based pattern matcher will halt the slow path as
soon as the next input character leads to a suffix mismatch, whereas
the packetized pattern matcher will retain the slow path active till
the last byte of the packet is parsed. Nevertheless, the packetized
architecture maintains the triggering probability at a much lower
value, since the recurrent signaling of prefixes belonging to the
same signature is suppressed.
Let us experimentally evaluate the performance of the packetized
pattern matching architecture against the byte level architecture.
Both architectures are likely to operate well when the input traffic is
benign and the slow path is triggered with very low probability, say
0.01%. Therefore, we consider an extreme situation where the 1%
of the contents of the input data stream consists of the entire
signatures. Thus, the triggering probability of the slow path will be
around 1%. We use 36 Cisco signatures whose average length is 33
characters, and assume that packets are 200 bytes long. In Figure 4,
we plot a snapshot of the timeline of the triggering events, and the
time intervals during which the slow path is active. It is apparent
that slow path in the packetized architecture remains active for
relatively longer durations. Consequently, the signatures have to be
split accordingly in the packetized architecture, so that the slow path
will handle such loads.

3.4 Protection against DoS attacks
In bifurcated packet processing architecture, a small fraction of
packets from the normal flows might be diverted to the slow path,
even though a normal data stream is not likely to match any
signature. The slow path processing is provisioned in a way that it
can sustain the rate at which such false packet diversions from
normal flows occur. Therefore, it is unlikely, that these packets from
normal flows will overload the slow path. However, a flow which
frequently matches prefixes, may overload the slow path by
triggering it more often than desired. This opens up a possibility of a
Denial of service attack.
A denial of service attack, in fact is much more threatening to the
end-to-end data transfer. Consider a packet from a normal flow
getting diverted to the slow path. If the slow path is overloaded, then
this packet will either get discarded or encounter enormous
processing delays. If the sending application retransmits this packet,
it will further exacerbate the overload condition in the slow path.
The implication on the end-to-end data transfer is that it may never

be able to deliver this packet, and complete the data transmission.
This clearly signals a need to protect these normal flows from such
repeated packet discards. To accomplish this objective, we need
some mechanism in the slow path to distinguish such packets of
normal flows from the packets of the anomalous or attack flows,
which are overloading the slow path. We now propose a lightweight
algorithm which performs such classification at very high speed and
with high accuracy.
Our algorithm is based upon statistical sampling of packets from
each flow. For each flow, we compute an anomaly index which is a
“moving average” of the number of its packets which matches one
of the prefixes in the fast path. The moving average can either be a
“simple moving average (SMA)” or an “exponential moving
average (EMA)”. For simplicity we only consider the SMA,
wherein we compute the average number of packets which matches
some prefix over a window of n previous packets. We call a flow
well-behaving, if less than ε fraction of its packets finds a match,
simply because such a flow will not overload the slow path. Flows
which find more matches are referred to as anomalous. If the
sampling window n is sufficiently large, then the anomaly indices of
the well-behaving flows are expected to be much smaller than those
of the anomalous/attack flows. However, longer sampling windows
will require more bits per flow to compute the anomaly index.
Consequently there is a trade-off between the accuracy of the
anomaly indices and the “per flow” memory needed to maintain
them. We attempt to strike a balance between this accuracy and the
cost of implementation.
Let us say that we are given with at most k-bits for every flow to
represent its anomaly index. Since a flow is declared anomalous as
soon as its anomaly index exceeds ε, we set ε as the upper bound of
the anomaly index. Thus, when all k-bits are set, it represents an
anomaly index of ε. Consequently, the per flow sampling window, n
comprises of 2k/ε packets; for every packet which matches a prefix,
the k-bit counter is incremented by 1/ε and for other packets it is
decremented by 1 (note that a flow is a threat only if more than ε
fraction of its packets are diverted to the slow path, or the mean
distance between packets which are diverted is smaller than 1/ε
packets). Thus, the probability that a flow which indeed is
anomalous is not detected will be O(e–n). If ε is 0.01, then 8-bit
anomaly counter will result in a false detection probability of well
below 10–6. This analysis assumes that the events of packet diverts
to the slow path is uniformly distributed. In case of any other
distribution, the accuracy of the detection of anomalous flows is
likely to improve while the probability that a normal flow is falsely
detected as anomalous may also increase.
The anomaly counters in fact, indicates the degree to which a flow
loads the slow path. Consequently, they can be used to classify not
just the anomalous flows but also the well behaving flows. The
flows can be prioritized in the slow path according to the degree of
their anomaly; the implication being that the slow path will first
process the flows with smaller anomaly indices. The slow path thus

1 101 201 301 401 501 601 1 101 201 301 401 501 601

packetized architecture byte-based architecture
slow path triggering

slow path being active

Figure 4: Fast path and slow path processing in a bifurcated packet and byte based processing architectures.

159

consists of multiple queues which will store the requests from
various flows according to their anomaly indices. Queues associated
with smaller anomaly indices are serviced with higher priority.
Hence, even if a well behaving flow accidentally diverts its packets
to the slow path, it will be serviced quickly in spite of the presence
of large volumes of anomalous packets.

3.5 Binding things together
Having described the procedure to split the reg-ex signatures into
simple prefixes and relatively complex suffixes as well as
mechanisms needed to put the suffix portions to sleep, we are now
ready to discuss some further issues. In these pattern matching
architectures, the first issue is that it often becomes critical to
prevent a receiver from receiving a complete signature. This has an
interesting implication. Whenever a packet is diverted to the slow
path, no subsequent packets of the same flow can be forwarded in
the fast path, until the slow path packet is completely processed. If
this policy is not adhered to, then signatures that span across
multiple packets might not be detected. This indicates that in any
flow, if a packet is accidentally diverted to the slow path,
subsequent packets of the flow can create a head of line (HoL)
blocking in the fast path. Thus, in order to avoid such HoL
blockings, a HoL buffer is maintained (shown in Figure 5), which
stores the packets that can not be processed currently.
The above discussion again bolsters the premise that the normal
flows must be guarded against anomalous/attack flows which may
overload the slow path. Without such protection, whenever a
diverted packet of a normal flow gets either delayed or discarded in
the heavily loaded slow path, subsequent packets of the flow cannot
be forwarded; thus the flow will essentially become dead. In case of
TCP, the discarded packet will get retransmitted after the time-out;
nevertheless, it will again get diverted to the slow path, and
congestion will ensue. Since DoS protection is crucial, we have
performed a thorough evaluation of DoS protection, and the results
are summarized in the technical report [35]

4. H-FA: Curing DFAs from Amnesia
DFA state explosion occurs primarily due amnesia, or the
incompetence of the DFA to follow multiple partial matches with a
single state of execution. Before proceeding with the cure to
amnesia, we re-examine the connection between amnesia and the
state explosion. As suggested previously, DFA state explosions
usually occur due to those signatures which comprise of simple
patterns followed by closures over characters classes (e.g. .* or [a-
z]*). The simple pattern in these signatures can be matched with a
stream of suitable characters and the subsequent characters can be
consumed without moving away from the closure. These characters
can begin to match either the same or some other reg-ex, and such

situations of multiple partial matches have to be followed. In fact,
every permutation of multiple partial matches has to be followed. A
DFA represents each such permutation with a separate state due to
its inability to remember anything other than its current state
(amnesia). With multiple closures, the number of permutations of
the partial matches can be exponential, thus the number of DFA
states can also explode exponentially.
An intuitive solution to avoid such exponential explosions is to
construct a machine, which can remember more information than
just a single state of execution. NFAs fall in this genre; they are able
to remember multiple execution states, thus they avoid state
explosion. NFAs, however, are slow; they may require O(n2) state
traversals to consume a character. In order to keep fast execution,
we would like to ensure that the machine maintains a single active
state. One way to enable single execution state and yet avoid state
explosion is to equip the machine with a small and fast cache, to
register key events during the parse, such as encountering a closure.
Recall that the state explosion occurs because the parsing get stuck
at a single or multiple closures; thus if the history buffer will register
these events then one may avoid several states. We call this class of
machine History based Finite Automaton (H-FA).
The execution of the H-FA is augmented with the history buffer. Its
automaton is similar to a traditional DFA and consists of a set of
states and transitions. However, multiple transitions on a single
character may leave from a state (like in a NFA). Nevertheless, only
one of these transitions is taken during the execution, which is
determined after examining the contents of the history buffer; thus
certain transitions have an associated condition. The contents of the
history buffer are updated during the machine execution. The size of
the H-FA automaton (number of states and transitions) depends
upon those partial matches, which are registered in the history
buffer; if we judiciously choose these partial matches then the H-FA
can be kept extremely compact. The next obvious questions are: i)
how to determine the partial matches? ii) Having determined them,
how to construct an automaton? iii) How to execute the automaton
and update the history buffer? We now desribe H-FA which
attempts to answer these questions.

4.1 Motivating example
We introduce the construction and executing of H-FA with a simple
example. Consider two reg-ex patterns listed below:
r1 = .*ab[^a]*c; r2 = .*def;
These patterns create a NFA with 7 states, which is shown below:

1 2 3b c

^a

4 5 6e f

0
d

a
*

NFA: ab[^a]*c; def

Let us examine the corresponding DFA, which is shown below
(some transitions are omitted to keep the figure readable):

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d
d

^[ad] c c c

Slow path
automata

per-flow
anomaly
counter

C

εB pkts/sec
:
:

k

Fast path
automaton

B pkts/sec

HoL buffer

slow path
sleep status

Figure 5: Fast path and slow path processing in a

bifurcated packet processing architecture.

160

The DFA has 10 states; each DFA state corresponds to a subset of
NFA states, as shown above. There is a small blowup in the number
of states, which occurs due to the presence of the Kleene closure
[^a]* in the expression r1. Once the parsing reaches the Kleene
closure (NFA state 2), subsequent input characters can begin to
match the expression r2, hence the DFA requires three additional
states (0,2,4), (0,2,5) and (0,2,6) to follow this multiple match.
There is a subtle difference between these states and the states (0,4),
(0,5) and (0,6), which corresponds to the matching of the reg-ex r2
alone: DFA states (0,2,4), (0,2,5) and (0,2,6) comprise of the same
subset of the NFA states as the DFA states (0,4), (0,5) and (0,6) plus
they also contain the NFA state 2.
In general, those NFA states which represent a Kleene closure
appear in several DFA states. The situation becomes more serious
when there are multiple reg-exes containing closures. If a NFA
consists of n states, of which k states represents closures, then
during the parsing of the NFA, several permutations of these closure
states can become active; 2k permutations are possible in the worst
case. Thus the corresponding DFA, each of whose states will be a
set of the active NFA states, may require total n2k states. These
DFA state set will comprise of one of the n NFA states plus one of
the 2k possible permutations of the k closure states. Such an
exponential explosion clearly occurs due to amnesia, as the DFA is
unable to remember that it has reached these closure NFA states
during the parsing. Intuitively, the simplest way to avoid the
explosion is to enable the DFA to remember all closures which has
been reached during the parsing. In the above example, if the
machine can maintain an additional flag which will indicate if the
NFA state 2 has been reached or not, then the total number of DFA
states can be reduced. One such machine is shown below:

0

0,4

d

0,1

a

d

0,5e

0, 3

d

0, 6f

a

d

d

b, flag<=1

a, flag<=0
c,if flag=1, flag<=0

a, flag<=0

c, flag=0

flag

This machine makes transitions like a DFA; besides it maintains a
flag, which is either set or reset (indicated by <=1, and <=0 in the
figure) when certain transitions are taken. For instance transition on
character a from state (0) to state (0,1) resets the flag, while
transition on character b from state (0,1) to state (0) sets the flag.
Some transitions also have an associated condition (flag is set or
reset); these transitions are taken only when the condition is met.
For instance the transition on character c from state (0) leads to state
(0,3) if the flag is set, else it leads to state (0). This machine will
accept the same language which is accepted by our original NFA,
however unlike the NFA, this machine will make only one state
traversal for an input character. Consider the parse of the string
“cdabc” starting at state (0), and with the flag reset.

() () () () () ()

 flagset flagreset

3,001,04,000

set is flag because reset is flag because

↑↑
⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ cbadc

In the beginning the flag is reset; consequently the machine makes a
move from state (0) to state (0) on the input character c. On the
other hand, when the last character c arrives, the machine makes a
move from state (0) to state (0,3) because the flag is set this time.

Since state (0,3) is an accepting state, the string is accepted. Such a
machine can be easily extended to maintain multiple flags, each
indicating a closure. The transitions depend upon the state of all
flags and they will be updated during certain transitions. As
illustrated by the above example, augmenting an automaton with
these flags can avoid state explosion. However, we need a more
systematic way to construct these H-FAs, which we propose now.

4.2 Formal Description of H-FA
History based Finite Automata (H-FA) comprises of an automaton
and a set called history. The transitions have i) an accompanied
condition which depends upon the state of the history, and ii) an
associated action which are inserts or remove from the history set,
or both. H-FA can thus be represented as a 6-tuple M = (Q, q0, Σ, A,
δ, H), where Q is the set of states, q0 is the start state, Σ is the
alphabet, A is the set of accepting states, δ is the transition function,
and H the history. The transition function δ takes in a character, a
state, and a history state as its input and returns a new state and a
new history state.
δ : Q × Σ × H → Q × H
H-FAs can be synthesized either directly from a NFA or from a
DFA. For clarity, we explain the construction from a combination of
NFA and DFA. To illustrate the construction, we consider our
previous example of the two reg-exes. First, we determine those
NFA states of the reg-exes, which are registered in the history buffer
(generally these are the closure NFA states). The first reg-ex, r1
contains a closure represented by the NFA state 2; hence we keep a
single flag in the history for this state. Afterwards, we identify those
DFA states, which comprise of these closure NFA states, in this
instance the NFA state 2. We call these DFA states (which are also
highlight below) fading states:

0

0,4

d

0,1

a

0,2b

a

a
d

0,5e

0,2,4

d

a

e

0, 3c

d 0,2,5 f 0,2,6

0, 6f

a

d
d

In the next step, we attempt to remove the NFA state 2 from the
fading DFA states. Notice that, if we will make a note that the NFA
state 2 has been reached by setting the history flag, then we can
remove the NFA state 2 from the fading states subset. The
consequence is that these fading states may overlap with some DFA
states in the non-fading region, thus they can be removed.
Transitions which originated from a non-fading state and led to a
fading state and vice-versa will now set and reset the history flag,
respectively. Furthermore, all transitions that remain in the fading
region will have an associated condition that the flag is set. Let us
illustrate the removal of the NFA state 2 from the fading state (0, 2).
After removal, this state will overlap with the DFA state (0); the
resulting conditional transitions are shown below:

0

0,4

d

0,1

a

a

a d

0,5e

0,2,4 e

0, 3

c,|2,-2

d
0,2,5 f 0,2,6

0, 6f

a

d
d

b,+2

d,|2

a,|2,-2

161

Here a transition with “|s” means that the transition is taken when
history flag for the state s is set; “+s” implies that, when this
transition is taken, the flag for s is set, and “-s” implies that, with
this transition, the flag for s is reset. Notice that all outgoing
transitions of the fading state (0,2) now originates from the state (0)
and has the associated condition that the flag is set. Also those
transitions which led to a non-fading state resets the flag and
incoming transitions into state (0,2) originating from a non-fading
state now has an action to set the flag. Once we remove all states in
the fading region, we will have the following H-FA:

0

0,4

0,1

a

a

a

d

0,5e

0, 3

d

0, 6f

a

d
d

b,+2
a,|2,-2

c,|2,-2
a,|2,-2

d,|2
d

e,|2 f,|2

Notice that several transitions in this machine can be pruned. For
example the transitions on character d from state (0) to state (0,4)
can be reduced to a single unconditional transition (the pruning
process is later described in greater detail). Once we completely
prune the transitions, the H-FA will have a total of 4 conditional
transitions; remaining transitions will be unconditional. When there
are multiple closures, then multiple flags will be used and the
procedure will be repeatedly applied to synthesize the H-FA.
The above example demonstrates a general method of the H-FA
construction from a DFA. In order to achieve the maximum space
reduction for a given number of history flags, the algorithm should
only register those NFA states in the history buffer which appear
most frequently in the DFA states. Afterwards, the above procedure
can be repeatedly applied. With multiple flags in the history buffer,
some transitions may have conditions that multiple history flags are
set. Moreover, some transitions may either set or reset multiple
flags. If there are n flags in the history buffer and h represents this k-
bit vector, then a condition C will be a k-bit vector, which becomes
true whenever all those bits of h are set whose corresponding bits in
C are also set.
The representation of conditions as vectors eases out the pruning
process, which is carried out immediately after the construction. The
pruning process eliminates any transition with condition C1, if
another transition on condition C2 exists between the same pair of
states, over the same character such that the condition C1 is a subset
of the condition C2 (i.e. C2 is true whenever C1 is true) and the
actions associated with both the transitions are the same. In general,
pruning process eliminates a large number of transitions, and it is
essential in reducing the memory requirements of H-FAs. However,
even after pruning, there can be a blowup in the number of
transitions. In the worst-case, if we eliminate k NFA states from the
DFA by employing k history flags then there can be up to 2k
additional conditional transitions in the resulting H-FA, thus there
will be little memory reduction. However, such worst-cases are rare;
normally there is only a small blowup in the number of transitions.
Analysis of the blowup and implementation of history buffer is
presented in great detail in the technical report [35].

5. H-cFA: Curing DFAs from Acalculia
We now propose “History based counting finite Automata” or H-
cFA, which efficiently cures traditional FA from acalculia, due to
which a FA is unable to efficiently count the occurrences of certain

sub-expressions. We begin with an example; we consider the same
set of two reg-exes with the closure in the first reg-ex replaced with
a length restriction of 4, as shown below:
r1 = .*ab[^a]4c; r2 = .*def;
A DFA for these two reg-exes will require 20 states. The blowup in
the number of states in the presence of the length restriction occurs
due to acalculia or the inability of the DFA to keep track of the
length restriction. Let us now construct an H-cFA for these reg-exes.
The first step in this construction replaces the length restriction with
a closure, and constructs the H-FA, with the closure represented by
a flag in the history buffer. Subsequently with every flag in the
history buffer, a counter is appended. The counter is set to the length
restriction value by those conditional transitions which set the flag,
while it is reset by those transitions which reset the flag.
Furthermore, those transitions whose condition is a set flag are
attached with an additional condition that the counter value is 0.
During the executing of the machine, all positive counters are
decremented for every input character. The resulting H-cFA is
shown below:

0

0,4

d

0,1

a

d

0,5e

0, 3

d

0, 6f

a

d

d

a; flag<=0

a; flag<=0

c; if flag=0
 or ctr≠0

ctr

d if (ctr >0)
decrement

b; flag<=1,
ctr<=4

c;if flag=1 & ctr=0; flag<=0

Consider the parse of the string “abdefdc” by this machine
starting at the state (0), and with the flag and counter reset.

() () () () () () () ()

0flag 0ctr 1ctr 2ctr 3ctr 4ctr1;flag

3,05,06,05,04,001,00
0ctr and 1 flag because

<=<=<=<=<=<=<=

↑↑↑↑↑↑
⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯

==

cdfedba

As the parsing reaches the state (0,1), and makes transition to the
state (0), the flag is set, and the counter is set to 4. Subsequent
transitions decrements the counter. Once the last character c of the
input string arrives, the machine makes a transition from state (0,5)
to state (0,3), because the flag is set and counter is 0; thus the string
is accepted. This example illustrates the straightforward method to
construct H-cFAs from H-FAs. Several kinds of length restrictions
including “greater than i”, “less than i” and “between i and j” can be
implemented. Each of these conditions will require an appropriate
condition with the transition. For example, “less than i” length
restriction will require that the conditional transition becomes true
when the history counter is greater than 0.
From the hardware implementation perspective, a greater than or
less than condition requires approximately equal number of gates
needed by an equality condition, hence different kinds of length
restrictions are likely to have identical implementation cost. In fact,
a reprogrammable logic can be devised equally efficiently, which
can check each of these conditions. Thus, the architecture will
remain flexible in face of the frequent signature updates. This
simple cure to acalculia is extremely effective is reducing the
number of states, specifically in the presence of long length
restrictions. Snort signatures comprises of several long length
restrictions, hence H-cFA is extremely valuable in implementing
these signatures. We now present our detailed experimental results,
where we highlight the effectiveness of our cures to the three reg-ex
problems.

162

6. Experimental Evaluation
We have carried out a comprehensive set of experiments in order to
evaluate the effectiveness of our proposed cure to the three
problems, insomnia, amnesia, and acalculia. Our primary signature
sets are the regular expressions used in the security appliances from
Cisco Systems [33]. These rule sets comprise of more than 750
moderately complex regular expressions. Cisco often uses DFAs to
implements these rules; consequently, due to the state explosion,
they employ more than a gigabyte of memory; still the parsing rates
remains sub-gigabits/s. We also considered the reg-ex signatures
used in the open source Snort and Bro NIDS, and in the Linux
layer-7 application protocol classifier. Linux layer-7 protocol
classifier comprises of 70 rules, while Snort rules consists of more
than a thousand and half reg-exes. In Snort, these reg-exes need not
be matched simultaneously, because before a packet is parsed, it is
classified, and based upon the classification, only a subset of the
reg-exes are considered. Therefore, we only group those Snort
signatures which correspond to the overlapping header rules, i.e.
those header rules which a single packet can match (we present
results of three such groups). For the Bro NIDS, we present results
for the HTTP signatures, which contain 648 reg-exes.
Since Cisco rules comprise of a large number of patterns, our first
step in implementing them involves grouping these rules into two
sets: one consisting of all those signatures which do not contain a
closure, while the second containing all signatures with at least one
closure. Clearly, the first set can be compiled into a composite DFA
without any difficulty. It is the second set of reg-exes, which are
problematic and requires our cure mechanisms; therefore all our
results are over these signatures. First we present the result of our
splitting algorithm, which leads to cure from insomnia.

6.1 Reg-ex splitting results
For reg-ex splitting, our representative experiment sets the slow path
packet diversion probability at 1%, and computes the cut in the reg-
exes. Our normal traffic traces were derived from the MIT DARPA
Intrusion Detection Data Sets [29], while the anomalous traffic
traces were provided to us by Cisco Systems. We have also created
synthetic anomalous traces, by inserting some signatures into the
normal traffic trace. With these traces, we have split the reg-exes
into prefixes and suffixes. Afterwards the prefixes are extended by
one or two more characters to ensure that slow path remains
substantially less loaded. We summarize the result of the splitting
process on the reg-exes in Table 1.
In this table, we first list the properties of the original reg-exes and
the memory needed to implement them. Notice that most of these
reg-ex sets are sub-divided into multiple sets. Each set is compiled
into a separate DFA, because it is difficult to compile all reg-exes
into as a single composite DFA (due to state explosion). The
implication of this sub-division is that since each DFA is executed
simultaneously, the parsing rate for a given memory bandwidth will
reduce. In the same table, on the right hand side, we list the
properties of the prefixes after the splitting. Notice that these
prefixes can be compiled into fewer DFAs, which will yield higher
parsing rates and less per flow state. Additionally, these DFAs are
relatively compact however their memory requirements are still
much higher compared to the current embedded memory densities.
The prime reason is that the prefixes still contain a small number of
closures which lead to a moderate state explosion. We now present
the results of our cure to amnesia, which avoids such state explosion
in the prefix automaton.

Table 1. Splitting results: Left columns show the properties of complete reg-ex, while right columns show the properties of prefixes
Regular expressions implementation before split Regular expressions prefix features after split Source # of rules
Avg.

ASCII
length

of
closures

of length
restrictions

Number
of DFA

Total
memory

Avg.
ASCII
length

of
closures

of length
restrictions

Number of
DFA

Total
memory

Cisco 68 44.1 70 15 6 973 MB 19.8 19 1 1 152 MB
Linux 70 67.2 31 0 4 30.7 MB 21.4 11 0 2 15.8 MB
Bro 648 23.64 0 0 1 3.77 MB 16.1 0 0 1 1.23 MB

Snort rule 1 22 59.4 9 11 5 114.6 MB 36.9 6 6 3 32.1 MB
Snort rule 2 10 43.72 11 10 2 64.2 MB 16 1 2 1 6.5 MB
Snort rule 3 19 30.72 8 6 N/A N/A 13.8 5 1 2 2.42 MB

Table 2. Results of the H-FA and H-cFA construction, there results are for the prefix portions of the reg-exes
DFA Composite H-FA / H-cFA Source # of

closures, #
of length
restriction

of
automata

total # of
states

of
flags in
history

of
counters
in history

Total #
of states

Max # of
transitions /

character

Total # of
transitions

% space
reduction

with H-FA

H-FA
parsing rate

speedup

Cisco64 14, 1 1 132784 6 0 3597 2 1215450 94.69 -
Cisco64 14, 1 1 132784 13 0 1861 8 682718 96.77 -
Cisco68 19, 1 1 328664 17 0 2956 8 1337293 97.03 -

Snort rule 1 6, 6 3 62589 5 6 583 8 238107 97.40 3x
Snort rule 2 1, 2 1 12703 1 2 71 2 27498 98.58 -
Snort rule 3 5, 1 2 4737 5 1 116 4 46124 93.48 2x

Linux70 11, 0 2 20662 9 0 1304 8 546378 81.63 2x

163

6.2 H-FA and H-cFA construction results
For the prefixes, we construct H-FAs, which dramatically reduces
the total memory. Snort prefixes comprise of several long length
restrictions therefore we construct H-cFAs for these. We find that
H-cFA is extremely effective in reducing the memory; without
using the counting capability of H-cFA, a composite automaton for
Snort prefixes explodes in size. In Table 2, we report the results
from our representative experiments. We highlight the number of
flags and counters that we employ in the history buffer. For Cisco
rules, we also show how varying the number of flags affects the H-
FA size. In general, with more history flags, the H-FA is more
compact. Notice that the traditional DFA compression techniques
including the D2FA [34] can be applied to H-FA, thereby further
reducing the memory.
The table also highlights an important result: the blowup in the
number of conditional transitions in the H-FA generally remains
very small. In a DFA there are 256 outgoing transitions, while in
most of the H-FAs there are less than 500. Thus, there is less than 2-
fold blowup in the number of transitions; on the other hand
reduction in the number of states is generally a few orders of
magnitude, thus the net effect is significant memory reduction. Due
to space restrictions, we are currently unable to present further
details of the H-FA and H-cFA construction.

7. CONCLUDING REMARKS
In this paper, we propose several mechanisms to enhance the
performance of regular expressions based parsers, which are widely
used to implement network intrusion detection systems. We begin
by identifying the three key limitations of traditional approach, and
categorized them as insomnia, amnesia and acalculia. We propose
solutions for each of the limitation, and show that our solutions are
orthogonal with respect to each other; hence they can be employed
in unison.
Based upon experiments which were carried out on real signatures
sets drawn from a collection of widely used networking systems, we
show that our solutions are indeed effective. It can reduce the
memory requirements of the state-of-the-art regular expressions
implementations by up to 100 times, while also enabling a two to
three fold increase in the packet throughput. We also pay adequate
attention to several complications that appears in real networks, e.g.
DoS protection, multiple simultaneous flows, and packet
multiplexing. Therefore, we believe that the proposed solutions can
aid in implementing network intrusion detection and prevention
systems much more securely and economically.

REFERENCES
[1] R. Sommer, V. Paxson, “Enhancing Byte-Level Network Intrusion

Detection Signatures with Context,” ACM conf. on Computer and
Communication Security, 2003, pp. 262--271.

[2] J. E. Hopcroft and J. D. Ullman, “Introduction to Automata Theory,
Languages, and Computation,” Addison Wesley, 1979.

[3] J. Hopcroft, “An nlogn algorithm for minimizing states in a finite
automaton,” in Theory of Machines and Computation, J. Kohavi, Ed.
New York: Academic, 1971, pp. 189--196.

[4] Bro: A System for Detecting Network Intruders in Real-Time.
http://www.icir.org/vern/bro-info.html

[5] M. Roesch, “Snort: Lightweight intrusion detection for networks,” In
Proc. 13th Systems Administration Conference (LISA), USENIX
Association, November 1999, pp 229–238.

[6] S. Antonatos, et. al, “Generating realistic workloads for network
intrusion detection systems,” In ACM Workshop on S & P, 2004.

[7] A. V. Aho and M. J. Corasick, “Efficient string matching: An aid to
bibliographic search,” Comm. of the ACM, 18(6):333–340, 1975.

[8] B. Commentz-Walter, “A string matching algorithm fast on the
average,” Proc. of ICALP, pages 118–132, July 1979.

[9] S. Wu, U. Manber,” A fast algorithm for multi-pattern searching,”
Tech. R. TR-94-17, Dept. of Comp. Science, Univ of Arizona, 1994.

[10] Fang Yu, et al., “Fast and Memory-Efficient Regular Expression
Matching for Deep Packet Inspection”, UCB tech. report, 2005.

[11] N. Tuck, T. Sherwood, B. Calder, and G. Varghese, “Deterministic
memory-efficient string matching algorithms for intrusion detection,”
IEEE Infocom 2004, pp. 333--340.

[12] L. Tan, and T. Sherwood, “A High Throughput String Matching
Architecture for Intrusion Detection and Prevention,” ISCA 2005.

[13] I. Sourdis and D. Pnevmatikatos, “Pre-decoded CAMs for Efficient and
High-Speed NIDS Pattern Matching,” Proc. IEEE Symp. on Field-Prog.
Custom Computing Machines, Apr. 2004, pp. 258–267.

[14] S. Yusuf and W. Luk, “Bitwise Optimised CAM for Network Intrusion
Detection Systems,” IEEE FPL 2005.

[15] R. Sidhu and V. K. Prasanna, “Fast regular expression matching using
FPGAs,” In IEEE Symposium on Field- Programmable Custom
Computing Machines, Rohnert Park, CA, USA, April 2001.

[16] C. R. Clark and D. E. Schimmel, “Efficient reconfigurable logic circuit
for matching complex network intrusion detection patterns,” In
Proceedings of 13th International Conference on Field Program.

[17] J. Moscola, et. al, “Implementation of a content-scanning module for an
internet firewall,” IEEE Workshop on FPGAs for Custom Comp.
Machines, Napa, USA, April 2003.

[18] R. W. Floyd, and J. D. Ullman, “The Compilation of Regular
Expressions into Integrated Circuits”, Journal of ACM, vol. 29, no. 3,
pp 603-622, July 1982.

[19] Scott Tyler Shafer, Mark Jones, “Network edge courts apps,”
http://infoworld.com/article/02/05/27/020527newebdev_1.html

[20] TippingPoint X505, www.tippingpoint.com/products_ips.html
[21] Cisco IOS IPS Deployment Guide, www.cisco.com
[22] Tarari RegEx, www. tarari.com/PDF/RegEx_FACT_SHEET.pdf
[23] N.J. Larsson, “Structures of string matching and data compression,”

PhD thesis, Dept. of Computer Science, Lund University, 1999 .
[24] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J. Lockwood,

“Deep Packet Inspection using Parallel Bloom Filters,” IEEE Hot
Interconnects 12, August 2003. IEEE Computer Society Press.

[25] Z. K. Baker, V. K. Prasanna, “Automatic Synthesis of Efficient
Intrusion Detection Systems on FPGAs,” in Field Prog. Logic and
Applications, Aug. 2004, pp. 311–321.

[26] Y. H. Cho, W. H. Mangione-Smith, “Deep Packet Filter with Dedicated
Logic and Read Only Memories,” Field Prog. Logic and Applications,
Aug. 2004, pp. 125–134.

[27] M. Gokhale, et al., “Granidt: Towards Gigabit Rate Network Intrusion
Detection Technology,” in FPL, Sept. 2002, pp. 404–413.

[28] J. Levandoski, E. Sommer, and M. Strait, “Application Layer Packet
Classifier for Linux”. http://l7-filter.sourceforge.net/.

[29] “MIT DARPA Intrusion Detection Data Sets,” http://www.
ll.mit.edu/IST/ideval/data/2000/2000_data_index.html.

[30] Vern Paxson et al., “Flex: A fast scanner generator”.
[31] SafeXcel Content Inspection Engine, hardware regex acceleration IP.
[32] Network Services Processor, OCTEON CN31XX, CN30XX Family.
[33] Will Eatherton, John Williams, “An encoded version of reg-ex database

from cisco systems provided for research purposes”.
[34] S. Kumar et al, “Algorithms to Accelerate Multiple Regular

Expressions Matching for Deep Packet Inspection”, in ACM
SIGCOMM'06, Pisa, Italy, September 12-15, 2006.

[35] S. Kumar, B. Chandrasekaran, J. Turner, and G. Varghese, “Curing
Regular Expressions Matching Algorithms from Insomnia, Amnesia,
and Acalculia”, Washington University technical report, 2006.

164

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

