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ABSTRACT 
The importance of network security has grown tremendously and a 
collection of devices have been introduced, which can improve the 
security of a network. Network intrusion detection systems (NIDS) 
are among the most widely deployed such system; popular NIDS 
use a collection of signatures of known security threats and viruses, 
which are used to scan each packet’s payload. Today, signatures are 
often specified as regular expressions; thus the core of the NIDS 
comprises of a regular expressions parser; such parsers are 
traditionally implemented as finite automata. Deterministic Finite 
Automata (DFA) are fast, therefore they are often desirable at high 
network link rates. DFA for the signatures, which are used in the 
current security devices, however require prohibitive amounts of 
memory, which limits their practical use. 

In this paper, we argue that the traditional DFA based NIDS has 
three main limitations: first they fail to exploit the fact that normal 
data streams rarely match any virus signature; second, DFAs are 
extremely inefficient in following multiple partially matching 
signatures and explodes in size, and third, finite automaton are 
incapable of efficiently keeping track of counts. We propose 
mechanisms to solve each of these drawbacks and demonstrate that 
our solutions can implement a NIDS much more securely and 
economically, and at the same time substantially improve the packet 
throughput. 

Categories and Subject Descriptors 
C.2.0 [Computer Communication Networks]: General – Security 
and protection (e.g., firewalls) 

General Terms 
Algorithms, Design, Security. 

Keywords 
DFA, regular expressions, deep packet inspection. 

1. INTRODUCTION 
Network security has recently received an enormous attention due to 
the mounting security concerns in today’s networks. A wide variety 
of algorithms have been proposed which can detect and combat with 

these security threats. Among all these proposals, signature based 
Network Intrusion Detection Systems (NIDS) have become a 
commercial success and have seen a widespread adoption. A 
signature based NIDS maintains signatures, which characterizes the 
profile of known security threats (e.g. a virus, or a DoS attack). 
These signatures are used to parse the data streams of various flows 
traversing through the network link; when a flow matches a 
signature, appropriate action is taken (e.g. block the flow or rate 
limit it). Traditionally, security signatures have been specified as 
string based exact match, however regular expressions are now 
replacing them due to their superior expressive power and 
flexibility. 
When regular expressions are used to specify the signatures in a 
NIDS, then finite automaton are typically employed to implement 
them. There are two types of finite automaton: Nondeterministic 
Finite Automaton (NFA) and Deterministic Finite Automaton 
(DFA) [2]. Unlike NFA, DFA requires only one state traversal per 
character thereby yielding higher parsing rates. Additionally, DFA 
maintains a single state of execution which reduces the “per flow” 
parse state maintained due to the packet multiplexing in network 
links. Consequently, DFA is the preferred method. 
DFAs are fast, however for the current sets of regular expressions, 
they require prohibitive amounts of memory. Current solutions often 
divide a signature set into multiple subsets, and construct a DFA for 
each of them. However, multiple DFAs require multiple state 
traversals which reduce the throughput, and increase the “per flow” 
parse state. Large “per flow” parse state may also create a 
performance bottleneck because they may have be loaded and 
stored for every packet due to the packet multiplexing. 
The problems associated with the traditional DFA based regular 
expressions stems from three prime factors. First, they take no 
interest in exploiting the fact that normal data streams rarely match 
more than first few symbols of any signature. In such situations, if 
one constructs a DFA for the entire signatures, then most portions of 
the DFA will be unvisited, thus the approach of keeping the entire 
automaton active appears wasteful; we call this deficiency insomnia. 
Second, a DFA usually maintains a single state of execution, due to 
which it is unable to efficiently follow the progress of multiple 
partial matches. They employ a separate state for each such 
combination of partial match, thus the number of states can explode 
combinatorially. It appears that if one equips an automaton with a 
small auxiliary memory which it will use to register the events of 
partial matches, then a combinatorial explosion can be avoided; we 
refer to this implement a 32-bit counter. We call this deficiency 
acalculia. 
In this paper, we propose solutions to tackle each of these three 
drawbacks. We propose mechanisms to split signatures such that, 
only one portion needs to remain active, while the remaining 
portions can be put to sleep under normal conditions. We also 
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propose a cure to amnesia, by introducing a new machine, which is 
as fast as DFA, but requires much fewer number of states. Our final 
cure to acalculia extends this machine, so that it can handle events 
of counting much more efficiently. 
The remainder of the paper is organized as follows. Due to space 
limitation, background is presented in the technical report [35]. 
Section 2 explains the drawbacks of traditional implementations. 
Our cure to insomnia is presented in Section 3. Section 4 presents 
the cure to amnesia, and section 5 presents the cure to acalculia. 
Section 6 reports the results, and the paper concludes in Section 7. 

2. Regular Expressions in Networking 
Any implementation of regular expressions in networking has to 
deal with several complications. The first complication arises due to 
multiplexing of packets in the network links. Since packets 
belonging to different flows can arrive interspersed with each other, 
any pattern matcher has to de-multiplex these packets and 
reassemble the data stream of various flows before parsing them. As 
a consequence, the architecture must maintain the parse state after 
parsing any packet. Upon a switch from a flow x to a flow y, the 
machine will first store the parse state of the current flow x and load 
the parse state of the last packet of the flow y. 
Consequently, it is critical to limit the parse state associated with the 
pattern matcher because at high speed backbone links, the number 
of flows can reach up to a million. NFAs are therefore not desirable 
in spite of being compact, because they can have a large number of 
active states. On the other hand, DFA requires a single active state; 
thus the amount of parse state remains small. 
The second complication arises due to the high network link rates. 
In a 10 Gbps network link, a payload byte usually arrives every 
nano-second. Thus, a parser running at 1GHz clock rate will have a 
single clock cycle to process each input byte. NFAs are unlikely to 
maintain such parsing speeds because they often require multiple 
state traversals for an input byte; thus DFAs appear to be the only 
resort. Due to these complications, one can conclude that a pattern 
matching machine for networking applications must satisfy these 
dual objectives i) fast parsing rates or few transitions per input byte, 
and ii) less “per flow” state. 
Although, DFAs appear to meet both of these goals, they often 
suffer from state explosion, i.e. the total number of states in a DFA 
can be exponential in the length of the regular expression. The 
problems with a DFA based approach can be divided into the 
following three main categories. 

2.1 Three Key Problems of Finite Automata 
In this section, we introduce the three deficiencies of traditional 
finite automata based regular expressions approach: 
1. Traditional regular expressions implementations often employ the 
complete signatures to parse the input data. However, in NIDS 
applications, the likelihood that a normal data stream completely 
matches a signature is low. Traditional approach therefore appears 
wasteful; rather, the tail portions of the signatures can be isolated 
from the automaton, and put to sleep during normal traffic and 
woken up only when they are needed. We call this inability of the 
traditional approach Insomnia. The number of states in a machine 
suffering from insomnia may unnecessarily bloat up; the problem 
becomes more severe when the tail portion is relatively complex 
and long. We present an effective cure to insomnia in section 3. 
2. The second deficiency, which is specific to DFAs, can be 
classified as Amnesia. In amnesia, a DFA has limited memory; thus 

it only remembers a single state of parsing and ignores everything 
about the earlier parse and the associated partial matches. Due to 
this tendency, DFAs may require a large number of states to track 
the progress of both the current match as well as any previous 
partial match. Although amnesia keeps the per flow state required 
during the parse small, it often causes an explosion in the number of 
states, because a separate state is required to indicate every possible 
combination of partial match. Intuitively, a machine which has a 
few flags in addition to its current state of execution can utilize 
these flags to track multiple matches more efficiently and avoid 
state explosions. We propose such a machine in section 4, which 
efficiently cures DFAs from amnesia. 

3. The third deficiency of the finite automata can be tagged with the 
label Acalculia due to which it (both NFA and DFA) is unable to 
efficiently count the occurrences of certain sub-expressions in the 
input stream. Thus, whenever a regular expression contains a length 
restriction of k on a sub-expression, the number of states required by 
the sub-expression gets multiplied by k. With length restrictions, the 
number of states in a NFA increases linearly, while in a DFA, it 
may increase exponentially. It is desirable to construct a machine 
which is capable of counting certain events, and uses this capability 
to avoid the state explosion. We propose such machines in section 5. 
We now proceed with our cures to these three deficiencies. Our first 
solution is cure from insomnia. 

3. Curing DFA from Insomnia 
Traditional approach of pattern matching constructs an automaton 
for the entire regular expression (reg-ex) signature, which is used to 
parse the input data. However, in NIDS applications, normal flows 
rarely match more than first few symbols of any signature. Thus, the 
traditional approach appears wasteful; the automaton unnecessarily 
bloats up in size as it attempts to represent the entire signature even 
though the tail portions are rarely visited. Rather, the tail portions 
can be isolated from the automaton, and put to sleep during normal 
traffic conditions and woken up only when they are needed. Since 
the traditional approach is unable to perform such selective sleeping 
and keeps the automaton awake for the entire signature, we call this 
deficiency insomnia. 

In other words, insomnia can be viewed as the inability of the 
traditional pattern matchers to isolate frequently visited portions of a 
signature from the infrequent ones. Insomnia is dangerous due to 
two reasons i) the infrequently visited tail portions of the reg-exes 
are generally complex (contains closures, unions, length restrictions) 
and long (more than 80% of the signature), and ii) the size of fast 
representations of reg-exes (e.g. DFA) usually are exponential in the 
length and complexity of an expression. Thus, without a cure from 
insomnia, a DFA of hundreds of reg-exes may become infeasible or 
will require enormous amounts of memory. 
An obvious cure to insomnia will essentially require an isolation of 
the frequently visited portions of the signatures from the infrequent 
ones. Clearly, frequently visited portions must be implemented with 
a fast representation like a DFA and stored in a fast memory in 
order to maintain high parsing rates. Moreover, since fast memories 
are less dense and limited in size, and fast representations like DFA 
usually suffer from state blowup, it is vital to keep such fast 
representations compact and simple. Fortunately, practical 
signatures can be cleanly split into simple prefixes and suffixes, 
such that the prefixes comprise of the entire frequently visited 
portions of the signature. Therefore, with such a clean separation in 
place, only the automaton representing the prefixes need to remain 
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active at all times; thereby, curing the traditional approach from 
insomnia by keeping the suffix automaton in a sleep state most of 
the times. 
There is an important tradeoff involved in such a prefix and suffix 
based pattern matching architecture. The general objective is to keep 
the prefixes small, so that the automaton which is awake all the time 
remains compact and fast. At the same time, if prefixes are too small 
then normal data streams will match them often, thereby waking up 
the suffixes more frequently than desired. Note that, during 
abnormal conditions the automaton representing the suffixes will be 
triggered more often; however, we discuss such scenarios later. 
Under normal conditions, the architecture must therefore balance 
the tradeoff between the simplicity of the fast automaton and the 
dormancy of the slow automaton. 
We refer to the automaton which represents the prefixes as the fast 
path and the remaining as the slow path. Fast path remains awake 
for the entire input data stream, and activates the slow path once it 
finds a matching prefix. There are two expectations. First, slow path 
should be triggered rarely. Second, it should process a fraction of 
the input data; hence it can use a slow memory and a compact 
representation like a NFA, even if it is relatively slow. In order to 
meet these expectations, normal data streams must not match the 
prefixes of the signatures or match them rarely. Upon a prefix 
match, the slow path processing should not continue for a long time. 
The likelihood that these two expectations will be met during 
normal traffic conditions will depend directly upon the signatures 
and the positions where they are split into prefixes and suffixes. 
Thus, it is critical to decide the split positions and we describe our 
procedure to compute these in the next section. 

3.1 Splitting the regular expressions 
The dual objectives of the splitting procedure are that the prefixes 
remain as small as possible, and at the same time, the likelihood that 
normal data matches these prefixes is low. The probability of 
matching a prefix depends upon its length and the distribution of 
various symbols in the input data. In this context, it may not be 
acceptable to assume a uniform random distribution of the input 
symbols (i.e. every symbol appears with a probability of 1/256) 
because some words appear much more often than the others (e.g. 
“HELO” in an ICMP packet). Therefore, one needs to consider a 
trace driven probability distribution of various input symbols [6]. 
With these traces, one can compute the matching probability of 
prefixes of different lengths under normal and anomalous traffic. 
This will determine the rate at which slow path will be triggered. 
In addition to the “matching probabilities”, it is important to 
consider the probabilities of making transitions between any two 
states of the automaton. This probability will determine how long 
the slow path will continue processing once it is triggered. These 
transition probabilities are likely to be dependent upon the previous 
stream of input symbols, because there is a strong correlation 
between the occurrences of various symbols, i.e. when and where 

they occur with respect to each other. The transition probabilities as 
well as the matching probabilities can be assigned by constructing 
an NFA of the regular expressions signatures and parsing the same 
against normal and anomalous traffic. 
More systematically, given the NFA of each regular expression, we 
determine the probability with which each state of the NFA 
becomes active and the probability that the NFA takes its different 
transitions. Once these probabilities are computed, we determine a 
cut in the NFA graph, so that i) there are as few nodes as possible on 
the left hand side of the cut, and ii) the probability that states on the 
right hand side of the cut is active is sufficiently small. This will 
ensure that the fast path remains compact and the slow path is 
triggered only occasionally. While determining the cut, we also 
need to ensure that the probability of those transitions which leaves 
some NFA node on the right hand side and enters some other node 
on the same side of the cut remains small. This will ensure that, 
once the slow path is triggered, it will stop after processing a few 
input symbols. Clearly, the cut computed from the normal traffic 
traces and from the attack traffic are likely to be different, thus the 
corresponding prefixes will also be different. We adopt the policy of 
taking the longer prefix. More details of the cutting algorithm are 
present in the technical report [35]. 

3.2 The bifurcated pattern matching 
We now present the bifurcated pattern matching architecture. The 
architecture (shown in Figure 1) consists of two components: fast 
path and slow path. The fast path parses every byte of each flow and 
matches them against the prefixes of all reg-exes. The slow path 
parses only those flows which have found a match in the fast path, 
and matches them only against the corresponding suffixes. 
Notice that, the parsing of input data is performed on a per flow 
basis. In order to keep parsing of each flow discrete, the “per flow 
parse state” has to be stored. With millions of active flows, parse 
states have to be stored in an off-chip memory, which may create a 
performance bottleneck because upon any flow switch we will have 
to store and load this information. With the minimum IP packet size 
being 40 bytes, we may have to perform this load and store 
operation every 40 ns at 10 Gbps rates. Thus, it is important to 
minimize the “per flow parse states”. This minimization is critical in 
the fast path because all flows are processed by the fast path. It does 
not pose a similar threat to the slow path because it processes a 
fraction of the payload of a small number of flows. 
Consequently, the fast path automaton has two objectives: 1) it must 
require small per flow parse state, and 2) it must be able to perform 
parsing at high speed, in order to meet the link rates. One obvious 
solution which will satisfy this dual objective is to construct a single 
composite DFA of all prefixes. A composite DFA will have only 
one active state per flow and will also require only one state 
traversal for an input character. Thus, if there are C flows in total, 
we will need C × statef memory, where statef is the bits needed to 
represent a DFA state. At this point in discussion we will proceed 
with a composite DFA in the fast path, later in section 4, we will 
propose an alternative to a composite DFA which is more space 
efficient and yet satisfies our dual objectives. 
Slow path on the other hand handles, say ε fraction of the total 
number of bytes processed by the fast path. Therefore, it will need 
to store the parse state of εC flows on an average. If we keep ε 
small, then unlike the fast path, we neither have to worry about 
minimizing the “per flow parse state” nor do we have to use a fast 
representation, to keep up with the link rates. Thus, a NFA may 
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Figure 1: Fast path and slow path processing in a 

bifurcated packet processing architecture. 
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suffice to represent the slow path. Nevertheless slow path offers 
another key advantage, i.e. a composite automaton for all suffixes is 
not required because we need to parse the flows against only those 
suffixes whose prefixes have been matched. 
However, there is a complication in the slow path. Slow path can be 
triggered multiple times for the same flow, thus there can be 
multiple instances of per flow active parse states even though we 
may be using a DFA. Consider a simple example of an expression 
ababcda, which is split into ab prefix and abcda suffix, and a 
packet payload ”xyababcdpq”. The slow path will be triggered 
twice by this packet, and there will be two instances of active parse 
states in the slow path. In general it is possible that i) a single packet 
triggers the slow path several times, in which case signaling 
between the fast and slow path may become a bottleneck and ii) 
there are multiple active states in the slow path, which will require 
complicated data-structures to store the parse states. 
These problems will exacerbate when the slow path will process 
packets much slower than the fast path and will handle its triggers 
sequentially. With the above packet, slow path will be triggered first 
after the fast path parses ”xyababcdpq” and second after 
”xyababcdpq”. Upon first trigger, it will parse the payload 
”xyababcdpq” and stop after it sees p. Upon second trigger, it 
will parse the payload ”xyababcdpq”, thus repeating the 
previous parse. Due to these complications, we propose a packetized 
version of bifurcated packet processing architecture. 

3.3 Packetized bifurcated pattern matching 
The objective of the packetized bifurcated packet processing is to 
minimize the signaling between the fast path and the slow path. 
More specifically if we ensure that the fast path triggers the slow 
path at most once for every packet, then the slow path will not 
repeat the parsing of the same packet payload. This objective can be 
satisfied by slightly modifying the slow path automaton, so that it 
parses the packets against the entire signature, and not just the 
suffixes. With the slow path representing the entire signature, the 
subsequent triggers for this signature will be captured within the 
slow path. Hence, they can be ignored. 
In order to better understand how the slow path is constructed and 
triggered, let us consider a simple example of 3 signatures: 
r1 = .*[gh]d[^g]*ge 
r2 = .*fag[^i]*i[^j]*j 
r3 = .*a[gh]i[^l]*[ae]c 

The NFA for these signatures are shown in figure 2 (a composite 
DFA for these signatures will contain 92 states). In the figure, the 
probabilities with which various NFA states are activated are also 
highlighted. A cut between the fast and slow path is also shown 
which divides the states so that the cumulative probability of the 
slow path states is less than 5%. 

With this cut, the prefixes will be p1 = [gh]d[^g]*g; p2 = f; and 
p3 = j[gh] and the corresponding suffixes will be s1 = e; s2 = 
ag[^i]*i[^j]*j; and s3 = i[^l]*[ae]c. As highlighted in the 
same figure, fast path consists of a composite DFA of the three 
prefixes p1, p2, and p3, which will have only 14 states, while the 
slow path comprises of three separate DFAs, one for each signature 
r1, r2, and r3, rather than just the suffixes s1, s2, and s3. 
Whenever the fast path will find a matching prefix, say pi in a 
packet, it will trigger the corresponding slow path automaton 
representing the signature ri. Once this automaton is triggered, all 
subsequent triggers corresponding to the prefix pi for the signature ri 
can be ignored because during the process of matching ri in the slow 
path, such triggers will also be detected. Thus, for any given packet 
processed in the fast path, the state of the slow path “active or 
asleep” associated with each signature is maintained, so that the 
subsequent triggers for any given signature can be masked out. 
However, we have to be careful in initiating the of triggering the 
slow path automaton representing any signature ri. Specifically, we 
have to ensure that the slow path automaton begins at a state which 
indicates that the prefix pi of the signature ri has already been 
detected. Consider the DFA for the first signature (r1) of the above 
slow path, shown in Figure 3. Instead of beginning at the usual start 
state, 0 of this DFA, we begin its parsing at the state (0,1,3), which 
indicates that the prefix p1 has just been detected; the parsing 
continues from this point onwards in the slow path. 
In general case, the start state of the slow path automaton will 
depend upon the fast path DFA state which triggers the slow path. 
More specifically, the slow path start state will be the minimal one 
which encompasses all partial matches in the fast path. 
The above procedure describes how we initiate the slow path 
automaton for a prefix match in any given packet. The decision that 
the slow path should remain active for the subsequent packets of the 
flow depends on the state of the slow path automaton at which the 
packet leaves it. If this final DFA state comprises any of the states 
of the slow path NFA, then the implication is that the slow path 
processing will continue; else the slow path will be put to sleep. For 
example, in the Figure 3, unless the final state upon a packet parsing 
is either (0,1,3) or (0,5), the subsequent packets of the flow will not 
be parsed by this automaton; in other words this automaton will no 
longer remain active. 
Let us now consider the parsing of a packet payload ”gdgdgh”. 
The fast path state traversal is illustrated below; the slow path will 
be triggered twice, but the second trigger will be ignored. 
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sleep. On the other hand if the remaining packet payload were 
”dge”, the packet would leave the slow path in the state (0,5). 
Thus, in this case, the slow path processing will remain active for 
the subsequent packets of the flow. 
In contrast with the previous byte based pattern matching 
architecture, the proposed packetized architecture has a drawback 
that it keeps the slow path automaton active until the packet is 
completely parsed in the slow path. Thus, the slow path may end up 
processing many more bytes, unlike in the byte level architecture. 
This drawback arises due to the difference in the processing 
granularity; the byte based pattern matcher will halt the slow path as 
soon as the next input character leads to a suffix mismatch, whereas 
the packetized pattern matcher will retain the slow path active till 
the last byte of the packet is parsed. Nevertheless, the packetized 
architecture maintains the triggering probability at a much lower 
value, since the recurrent signaling of prefixes belonging to the 
same signature is suppressed. 
Let us experimentally evaluate the performance of the packetized 
pattern matching architecture against the byte level architecture. 
Both architectures are likely to operate well when the input traffic is 
benign and the slow path is triggered with very low probability, say 
0.01%. Therefore, we consider an extreme situation where the 1% 
of the contents of the input data stream consists of the entire 
signatures. Thus, the triggering probability of the slow path will be 
around 1%. We use 36 Cisco signatures whose average length is 33 
characters, and assume that packets are 200 bytes long. In Figure 4, 
we plot a snapshot of the timeline of the triggering events, and the 
time intervals during which the slow path is active. It is apparent 
that slow path in the packetized architecture remains active for 
relatively longer durations. Consequently, the signatures have to be 
split accordingly in the packetized architecture, so that the slow path 
will handle such loads. 

3.4 Protection against DoS attacks 
In bifurcated packet processing architecture, a small fraction of 
packets from the normal flows might be diverted to the slow path, 
even though a normal data stream is not likely to match any 
signature. The slow path processing is provisioned in a way that it 
can sustain the rate at which such false packet diversions from 
normal flows occur. Therefore, it is unlikely, that these packets from 
normal flows will overload the slow path. However, a flow which 
frequently matches prefixes, may overload the slow path by 
triggering it more often than desired. This opens up a possibility of a 
Denial of service attack. 
A denial of service attack, in fact is much more threatening to the 
end-to-end data transfer. Consider a packet from a normal flow 
getting diverted to the slow path. If the slow path is overloaded, then 
this packet will either get discarded or encounter enormous 
processing delays. If the sending application retransmits this packet, 
it will further exacerbate the overload condition in the slow path. 
The implication on the end-to-end data transfer is that it may never 

be able to deliver this packet, and complete the data transmission. 
This clearly signals a need to protect these normal flows from such 
repeated packet discards. To accomplish this objective, we need 
some mechanism in the slow path to distinguish such packets of 
normal flows from the packets of the anomalous or attack flows, 
which are overloading the slow path. We now propose a lightweight 
algorithm which performs such classification at very high speed and 
with high accuracy. 
Our algorithm is based upon statistical sampling of packets from 
each flow. For each flow, we compute an anomaly index which is a 
“moving average” of the number of its packets which matches one 
of the prefixes in the fast path. The moving average can either be a 
“simple moving average (SMA)” or an “exponential moving 
average (EMA)”. For simplicity we only consider the SMA, 
wherein we compute the average number of packets which matches 
some prefix over a window of n previous packets. We call a flow 
well-behaving, if less than ε fraction of its packets finds a match, 
simply because such a flow will not overload the slow path. Flows 
which find more matches are referred to as anomalous. If the 
sampling window n is sufficiently large, then the anomaly indices of 
the well-behaving flows are expected to be much smaller than those 
of the anomalous/attack flows. However, longer sampling windows 
will require more bits per flow to compute the anomaly index. 
Consequently there is a trade-off between the accuracy of the 
anomaly indices and the “per flow” memory needed to maintain 
them. We attempt to strike a balance between this accuracy and the 
cost of implementation. 
Let us say that we are given with at most k-bits for every flow to 
represent its anomaly index. Since a flow is declared anomalous as 
soon as its anomaly index exceeds ε, we set ε as the upper bound of 
the anomaly index. Thus, when all k-bits are set, it represents an 
anomaly index of ε. Consequently, the per flow sampling window, n 
comprises of 2k/ε packets; for every packet which matches a prefix, 
the k-bit counter is incremented by 1/ε and for other packets it is 
decremented by 1 (note that a flow is a threat only if more than ε 
fraction of its packets are diverted to the slow path, or the mean 
distance between packets which are diverted is smaller than 1/ε 
packets). Thus, the probability that a flow which indeed is 
anomalous is not detected will be O(e–n). If ε is 0.01, then 8-bit 
anomaly counter will result in a false detection probability of well 
below 10–6. This analysis assumes that the events of packet diverts 
to the slow path is uniformly distributed. In case of any other 
distribution, the accuracy of the detection of anomalous flows is 
likely to improve while the probability that a normal flow is falsely 
detected as anomalous may also increase. 
The anomaly counters in fact, indicates the degree to which a flow 
loads the slow path. Consequently, they can be used to classify not 
just the anomalous flows but also the well behaving flows. The 
flows can be prioritized in the slow path according to the degree of 
their anomaly; the implication being that the slow path will first 
process the flows with smaller anomaly indices. The slow path thus 
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packetized architecture byte-based architecture
slow path triggering
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Figure 4: Fast path and slow path processing in a bifurcated packet and byte based processing architectures. 
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consists of multiple queues which will store the requests from 
various flows according to their anomaly indices. Queues associated 
with smaller anomaly indices are serviced with higher priority. 
Hence, even if a well behaving flow accidentally diverts its packets 
to the slow path, it will be serviced quickly in spite of the presence 
of large volumes of anomalous packets. 

3.5 Binding things together 
Having described the procedure to split the reg-ex signatures into 
simple prefixes and relatively complex suffixes as well as 
mechanisms needed to put the suffix portions to sleep, we are now 
ready to discuss some further issues. In these pattern matching 
architectures, the first issue is that it often becomes critical to 
prevent a receiver from receiving a complete signature. This has an 
interesting implication. Whenever a packet is diverted to the slow 
path, no subsequent packets of the same flow can be forwarded in 
the fast path, until the slow path packet is completely processed. If 
this policy is not adhered to, then signatures that span across 
multiple packets might not be detected. This indicates that in any 
flow, if a packet is accidentally diverted to the slow path, 
subsequent packets of the flow can create a head of line (HoL) 
blocking in the fast path. Thus, in order to avoid such HoL 
blockings, a HoL buffer is maintained (shown in Figure 5), which 
stores the packets that can not be processed currently. 
The above discussion again bolsters the premise that the normal 
flows must be guarded against anomalous/attack flows which may 
overload the slow path. Without such protection, whenever a 
diverted packet of a normal flow gets either delayed or discarded in 
the heavily loaded slow path, subsequent packets of the flow cannot 
be forwarded; thus the flow will essentially become dead. In case of 
TCP, the discarded packet will get retransmitted after the time-out; 
nevertheless, it will again get diverted to the slow path, and 
congestion will ensue. Since DoS protection is crucial, we have 
performed a thorough evaluation of DoS protection, and the results 
are summarized in the technical report [35] 

4. H-FA: Curing DFAs from Amnesia 
DFA state explosion occurs primarily due amnesia, or the 
incompetence of the DFA to follow multiple partial matches with a 
single state of execution. Before proceeding with the cure to 
amnesia, we re-examine the connection between amnesia and the 
state explosion. As suggested previously, DFA state explosions 
usually occur due to those signatures which comprise of simple 
patterns followed by closures over characters classes (e.g. .* or [a-
z]*). The simple pattern in these signatures can be matched with a 
stream of suitable characters and the subsequent characters can be 
consumed without moving away from the closure. These characters 
can begin to match either the same or some other reg-ex, and such 

situations of multiple partial matches have to be followed. In fact, 
every permutation of multiple partial matches has to be followed. A 
DFA represents each such permutation with a separate state due to 
its inability to remember anything other than its current state 
(amnesia). With multiple closures, the number of permutations of 
the partial matches can be exponential, thus the number of DFA 
states can also explode exponentially. 
An intuitive solution to avoid such exponential explosions is to 
construct a machine, which can remember more information than 
just a single state of execution. NFAs fall in this genre; they are able 
to remember multiple execution states, thus they avoid state 
explosion. NFAs, however, are slow; they may require O(n2) state 
traversals to consume a character. In order to keep fast execution, 
we would like to ensure that the machine maintains a single active 
state. One way to enable single execution state and yet avoid state 
explosion is to equip the machine with a small and fast cache, to 
register key events during the parse, such as encountering a closure. 
Recall that the state explosion occurs because the parsing get stuck 
at a single or multiple closures; thus if the history buffer will register 
these events then one may avoid several states. We call this class of 
machine History based Finite Automaton (H-FA). 
The execution of the H-FA is augmented with the history buffer. Its 
automaton is similar to a traditional DFA and consists of a set of 
states and transitions. However, multiple transitions on a single 
character may leave from a state (like in a NFA). Nevertheless, only 
one of these transitions is taken during the execution, which is 
determined after examining the contents of the history buffer; thus 
certain transitions have an associated condition. The contents of the 
history buffer are updated during the machine execution. The size of 
the H-FA automaton (number of states and transitions) depends 
upon those partial matches, which are registered in the history 
buffer; if we judiciously choose these partial matches then the H-FA 
can be kept extremely compact. The next obvious questions are: i) 
how to determine the partial matches? ii) Having determined them, 
how to construct an automaton? iii) How to execute the automaton 
and update the history buffer? We now desribe H-FA which 
attempts to answer these questions. 

4.1 Motivating example 
We introduce the construction and executing of H-FA with a simple 
example. Consider two reg-ex patterns listed below: 
r1 = .*ab[^a]*c;  r2 = .*def; 
These patterns create a NFA with 7 states, which is shown below: 

1 2 3b c

^a

4 5 6e f

0
d

a
*

NFA: ab[^a]*c; def

 
Let us examine the corresponding DFA, which is shown below 
(some transitions are omitted to keep the figure readable): 
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Figure 5: Fast path and slow path processing in a 

bifurcated packet processing architecture. 
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The DFA has 10 states; each DFA state corresponds to a subset of 
NFA states, as shown above. There is a small blowup in the number 
of states, which occurs due to the presence of the Kleene closure 
[^a]* in the expression r1. Once the parsing reaches the Kleene 
closure (NFA state 2), subsequent input characters can begin to 
match the expression r2, hence the DFA requires three additional 
states (0,2,4), (0,2,5) and (0,2,6) to follow this multiple match. 
There is a subtle difference between these states and the states (0,4), 
(0,5) and (0,6), which corresponds to the matching of the reg-ex r2 
alone: DFA states (0,2,4), (0,2,5) and (0,2,6) comprise of the same 
subset of the NFA states as the DFA states (0,4), (0,5) and (0,6) plus 
they also contain the NFA state 2. 
In general, those NFA states which represent a Kleene closure 
appear in several DFA states. The situation becomes more serious 
when there are multiple reg-exes containing closures. If a NFA 
consists of n states, of which k states represents closures, then 
during the parsing of the NFA, several permutations of these closure 
states can become active; 2k permutations are possible in the worst 
case. Thus the corresponding DFA, each of whose states will be a 
set of the active NFA states, may require total n2k states. These 
DFA state set will comprise of one of the n NFA states plus one of 
the 2k possible permutations of the k closure states. Such an 
exponential explosion clearly occurs due to amnesia, as the DFA is 
unable to remember that it has reached these closure NFA states 
during the parsing. Intuitively, the simplest way to avoid the 
explosion is to enable the DFA to remember all closures which has 
been reached during the parsing. In the above example, if the 
machine can maintain an additional flag which will indicate if the 
NFA state 2 has been reached or not, then the total number of DFA 
states can be reduced. One such machine is shown below: 
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This machine makes transitions like a DFA; besides it maintains a 
flag, which is either set or reset (indicated by <=1, and <=0 in the 
figure) when certain transitions are taken. For instance transition on 
character a from state (0) to state (0,1) resets the flag, while 
transition on character b from state (0,1) to state (0) sets the flag. 
Some transitions also have an associated condition (flag is set or 
reset); these transitions are taken only when the condition is met. 
For instance the transition on character c from state (0) leads to state 
(0,3) if the flag is set, else it leads to state (0). This machine will 
accept the same language which is accepted by our original NFA, 
however unlike the NFA, this machine will make only one state 
traversal for an input character. Consider the parse of the string 
“cdabc” starting at state (0), and with the flag reset. 

( ) ( ) ( ) ( ) ( ) ( )

                    flagset     flagreset                                           
                                                           

3,001,04,000
     

set is flag because                                                                                                                                reset      is flag because        

↑↑
⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯ cbadc  

In the beginning the flag is reset; consequently the machine makes a 
move from state (0) to state (0) on the input character c. On the 
other hand, when the last character c arrives, the machine makes a 
move from state (0) to state (0,3) because the flag is set this time. 

Since state (0,3) is an accepting state, the string is accepted. Such a 
machine can be easily extended to maintain multiple flags, each 
indicating a closure. The transitions depend upon the state of all 
flags and they will be updated during certain transitions. As 
illustrated by the above example, augmenting an automaton with 
these flags can avoid state explosion. However, we need a more 
systematic way to construct these H-FAs, which we propose now. 

4.2 Formal Description of H-FA 
History based Finite Automata (H-FA) comprises of an automaton 
and a set called history. The transitions have i) an accompanied 
condition which depends upon the state of the history, and ii) an 
associated action which are inserts or remove from the history set, 
or both. H-FA can thus be represented as a 6-tuple M = (Q, q0, Σ, A, 
δ, H), where Q is the set of states, q0 is the start state, Σ is the 
alphabet, A is the set of accepting states, δ is the transition function, 
and H the history. The transition function δ takes in a character, a 
state, and a history state as its input and returns a new state and a 
new history state. 
δ : Q × Σ × H  → Q × H 
H-FAs can be synthesized either directly from a NFA or from a 
DFA. For clarity, we explain the construction from a combination of 
NFA and DFA. To illustrate the construction, we consider our 
previous example of the two reg-exes. First, we determine those 
NFA states of the reg-exes, which are registered in the history buffer 
(generally these are the closure NFA states). The first reg-ex, r1 
contains a closure represented by the NFA state 2; hence we keep a 
single flag in the history for this state. Afterwards, we identify those 
DFA states, which comprise of these closure NFA states, in this 
instance the NFA state 2. We call these DFA states (which are also 
highlight below) fading states: 
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In the next step, we attempt to remove the NFA state 2 from the 
fading DFA states. Notice that, if we will make a note that the NFA 
state 2 has been reached by setting the history flag, then we can 
remove the NFA state 2 from the fading states subset. The 
consequence is that these fading states may overlap with some DFA 
states in the non-fading region, thus they can be removed. 
Transitions which originated from a non-fading state and led to a 
fading state and vice-versa will now set and reset the history flag, 
respectively. Furthermore, all transitions that remain in the fading 
region will have an associated condition that the flag is set. Let us 
illustrate the removal of the NFA state 2 from the fading state (0, 2). 
After removal, this state will overlap with the DFA state (0); the 
resulting conditional transitions are shown below: 
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Here a transition with “|s” means that the transition is taken when 
history flag for the state s is set; “+s” implies that, when this 
transition is taken, the flag for s is set, and “-s” implies that, with 
this transition, the flag for s is reset. Notice that all outgoing 
transitions of the fading state (0,2) now originates from the state (0) 
and has the associated condition that the flag is set. Also those 
transitions which led to a non-fading state resets the flag and 
incoming transitions into state (0,2) originating from a non-fading 
state now has an action to set the flag. Once we remove all states in 
the fading region, we will have the following H-FA: 
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Notice that several transitions in this machine can be pruned. For 
example the transitions on character d from state (0) to state (0,4) 
can be reduced to a single unconditional transition (the pruning 
process is later described in greater detail). Once we completely 
prune the transitions, the H-FA will have a total of 4 conditional 
transitions; remaining transitions will be unconditional. When there 
are multiple closures, then multiple flags will be used and the 
procedure will be repeatedly applied to synthesize the H-FA. 
The above example demonstrates a general method of the H-FA 
construction from a DFA. In order to achieve the maximum space 
reduction for a given number of history flags, the algorithm should 
only register those NFA states in the history buffer which appear 
most frequently in the DFA states. Afterwards, the above procedure 
can be repeatedly applied. With multiple flags in the history buffer, 
some transitions may have conditions that multiple history flags are 
set. Moreover, some transitions may either set or reset multiple 
flags. If there are n flags in the history buffer and h represents this k-
bit vector, then a condition C will be a k-bit vector, which becomes 
true whenever all those bits of h are set whose corresponding bits in 
C are also set. 
The representation of conditions as vectors eases out the pruning 
process, which is carried out immediately after the construction. The 
pruning process eliminates any transition with condition C1, if 
another transition on condition C2 exists between the same pair of 
states, over the same character such that the condition C1 is a subset 
of the condition C2 (i.e. C2 is true whenever C1 is true) and the 
actions associated with both the transitions are the same. In general, 
pruning process eliminates a large number of transitions, and it is 
essential in reducing the memory requirements of H-FAs. However, 
even after pruning, there can be a blowup in the number of 
transitions. In the worst-case, if we eliminate k NFA states from the 
DFA by employing k history flags then there can be up to 2k 
additional conditional transitions in the resulting H-FA, thus there 
will be little memory reduction. However, such worst-cases are rare; 
normally there is only a small blowup in the number of transitions. 
Analysis of the blowup and implementation of history buffer is 
presented in great detail in the technical report [35]. 

5. H-cFA: Curing DFAs from Acalculia 
We now propose “History based counting finite Automata” or H-
cFA, which efficiently cures traditional FA from acalculia, due to 
which a FA is unable to efficiently count the occurrences of certain 

sub-expressions. We begin with an example; we consider the same 
set of two reg-exes with the closure in the first reg-ex replaced with 
a length restriction of 4, as shown below: 
r1 = .*ab[^a]4c;  r2 = .*def; 
A DFA for these two reg-exes will require 20 states. The blowup in 
the number of states in the presence of the length restriction occurs 
due to acalculia or the inability of the DFA to keep track of the 
length restriction. Let us now construct an H-cFA for these reg-exes. 
The first step in this construction replaces the length restriction with 
a closure, and constructs the H-FA, with the closure represented by 
a flag in the history buffer. Subsequently with every flag in the 
history buffer, a counter is appended. The counter is set to the length 
restriction value by those conditional transitions which set the flag, 
while it is reset by those transitions which reset the flag. 
Furthermore, those transitions whose condition is a set flag are 
attached with an additional condition that the counter value is 0. 
During the executing of the machine, all positive counters are 
decremented for every input character. The resulting H-cFA is 
shown below: 
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Consider the parse of the string “abdefdc” by this machine 
starting at the state (0), and with the flag and counter reset. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0flag                  0ctr                   1ctr                     2ctr                  3ctr         4ctr1;flag                                            

                                                                                                            
3,05,06,05,04,001,00
0ctr and 1 flag because                                                                                                                                                                                                                                                

<=<=<=<=<=<=<=

↑↑↑↑↑↑
⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯⎯→⎯

==

cdfedba

As the parsing reaches the state (0,1), and makes transition to the 
state (0), the flag is set, and the counter is set to 4. Subsequent 
transitions decrements the counter. Once the last character c of the 
input string arrives, the machine makes a transition from state (0,5) 
to state (0,3), because the flag is set and counter is 0; thus the string 
is accepted. This example illustrates the straightforward method to 
construct H-cFAs from H-FAs. Several kinds of length restrictions 
including “greater than i”, “less than i” and “between i and j” can be 
implemented. Each of these conditions will require an appropriate 
condition with the transition. For example, “less than i” length 
restriction will require that the conditional transition becomes true 
when the history counter is greater than 0. 
From the hardware implementation perspective, a greater than or 
less than condition requires approximately equal number of gates 
needed by an equality condition, hence different kinds of length 
restrictions are likely to have identical implementation cost. In fact, 
a reprogrammable logic can be devised equally efficiently, which 
can check each of these conditions. Thus, the architecture will 
remain flexible in face of the frequent signature updates. This 
simple cure to acalculia is extremely effective is reducing the 
number of states, specifically in the presence of long length 
restrictions. Snort signatures comprises of several long length 
restrictions, hence H-cFA is extremely valuable in implementing 
these signatures. We now present our detailed experimental results, 
where we highlight the effectiveness of our cures to the three reg-ex 
problems. 
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6. Experimental Evaluation 
We have carried out a comprehensive set of experiments in order to 
evaluate the effectiveness of our proposed cure to the three 
problems, insomnia, amnesia, and acalculia. Our primary signature 
sets are the regular expressions used in the security appliances from 
Cisco Systems [33]. These rule sets comprise of more than 750 
moderately complex regular expressions. Cisco often uses DFAs to 
implements these rules; consequently, due to the state explosion, 
they employ more than a gigabyte of memory; still the parsing rates 
remains sub-gigabits/s. We also considered the reg-ex signatures 
used in the open source Snort and Bro NIDS, and in the Linux 
layer-7 application protocol classifier. Linux layer-7 protocol 
classifier comprises of 70 rules, while Snort rules consists of more 
than a thousand and half reg-exes. In Snort, these reg-exes need not 
be matched simultaneously, because before a packet is parsed, it is 
classified, and based upon the classification, only a subset of the 
reg-exes are considered. Therefore, we only group those Snort 
signatures which correspond to the overlapping header rules, i.e. 
those header rules which a single packet can match (we present 
results of three such groups). For the Bro NIDS, we present results 
for the HTTP signatures, which contain 648 reg-exes. 
Since Cisco rules comprise of a large number of patterns, our first 
step in implementing them involves grouping these rules into two 
sets: one consisting of all those signatures which do not contain a 
closure, while the second containing all signatures with at least one 
closure. Clearly, the first set can be compiled into a composite DFA 
without any difficulty. It is the second set of reg-exes, which are 
problematic and requires our cure mechanisms; therefore all our 
results are over these signatures. First we present the result of our 
splitting algorithm, which leads to cure from insomnia. 

6.1 Reg-ex splitting results 
For reg-ex splitting, our representative experiment sets the slow path 
packet diversion probability at 1%, and computes the cut in the reg-
exes. Our normal traffic traces were derived from the MIT DARPA 
Intrusion Detection Data Sets [29], while the anomalous traffic 
traces were provided to us by Cisco Systems. We have also created 
synthetic anomalous traces, by inserting some signatures into the 
normal traffic trace. With these traces, we have split the reg-exes 
into prefixes and suffixes. Afterwards the prefixes are extended by 
one or two more characters to ensure that slow path remains 
substantially less loaded. We summarize the result of the splitting 
process on the reg-exes in Table 1. 
In this table, we first list the properties of the original reg-exes and 
the memory needed to implement them. Notice that most of these 
reg-ex sets are sub-divided into multiple sets. Each set is compiled 
into a separate DFA, because it is difficult to compile all reg-exes 
into as a single composite DFA (due to state explosion). The 
implication of this sub-division is that since each DFA is executed 
simultaneously, the parsing rate for a given memory bandwidth will 
reduce. In the same table, on the right hand side, we list the 
properties of the prefixes after the splitting. Notice that these 
prefixes can be compiled into fewer DFAs, which will yield higher 
parsing rates and less per flow state. Additionally, these DFAs are 
relatively compact however their memory requirements are still 
much higher compared to the current embedded memory densities. 
The prime reason is that the prefixes still contain a small number of 
closures which lead to a moderate state explosion. We now present 
the results of our cure to amnesia, which avoids such state explosion 
in the prefix automaton. 

Table 1. Splitting results: Left columns show the properties of complete reg-ex, while right columns show the properties of prefixes
Regular expressions implementation before split Regular expressions prefix features after split Source # of rules 
Avg. 

ASCII 
length 

# of 
closures 

# of length 
restrictions 

Number 
of DFA

Total 
memory 

Avg. 
ASCII 
length 

# of 
closures

# of length 
restrictions 

Number of 
DFA 

Total 
memory 

Cisco 68 44.1 70 15 6 973 MB 19.8 19 1 1 152 MB 
Linux 70 67.2 31 0 4 30.7 MB 21.4 11 0 2 15.8 MB
Bro 648 23.64 0 0 1 3.77 MB 16.1 0 0 1 1.23 MB

Snort rule 1 22 59.4 9 11 5 114.6 MB 36.9 6 6 3 32.1 MB
Snort rule 2 10 43.72 11 10 2 64.2 MB 16 1 2 1 6.5 MB 
Snort rule 3 19 30.72 8 6 N/A N/A 13.8 5 1 2 2.42 MB

Table 2. Results of the H-FA and H-cFA construction, there results are for the prefix portions of the reg-exes 
DFA Composite H-FA / H-cFA Source # of 

closures, # 
of length 
restriction 

# of 
automata 

total # of 
states 

# of 
flags in 
history 

# of 
counters 
in history 

Total # 
of states

Max # of 
transitions / 

character 

Total # of 
transitions 

% space 
reduction 

with H-FA 

H-FA 
parsing rate 

speedup 

Cisco64 14, 1 1 132784 6 0 3597 2 1215450 94.69 - 
Cisco64 14, 1 1 132784 13 0 1861 8 682718 96.77 - 
Cisco68 19, 1 1 328664 17 0 2956 8 1337293 97.03 - 

Snort rule 1 6, 6 3 62589 5 6 583 8 238107 97.40 3x 
Snort rule 2 1, 2 1 12703 1 2 71 2 27498 98.58 - 
Snort rule 3 5, 1 2 4737 5 1 116 4 46124 93.48 2x 

Linux70 11, 0 2 20662 9 0 1304 8 546378 81.63 2x 
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6.2 H-FA and H-cFA construction results 
For the prefixes, we construct H-FAs, which dramatically reduces 
the total memory. Snort prefixes comprise of several long length 
restrictions therefore we construct H-cFAs for these. We find that 
H-cFA is extremely effective in reducing the memory; without 
using the counting capability of H-cFA, a composite automaton for 
Snort prefixes explodes in size. In Table 2, we report the results 
from our representative experiments. We highlight the number of 
flags and counters that we employ in the history buffer. For Cisco 
rules, we also show how varying the number of flags affects the H-
FA size. In general, with more history flags, the H-FA is more 
compact. Notice that the traditional DFA compression techniques 
including the D2FA [34] can be applied to H-FA, thereby further 
reducing the memory. 
The table also highlights an important result: the blowup in the 
number of conditional transitions in the H-FA generally remains 
very small. In a DFA there are 256 outgoing transitions, while in 
most of the H-FAs there are less than 500. Thus, there is less than 2-
fold blowup in the number of transitions; on the other hand 
reduction in the number of states is generally a few orders of 
magnitude, thus the net effect is significant memory reduction. Due 
to space restrictions, we are currently unable to present further 
details of the H-FA and H-cFA construction. 

7. CONCLUDING REMARKS 
In this paper, we propose several mechanisms to enhance the 
performance of regular expressions based parsers, which are widely 
used to implement network intrusion detection systems. We begin 
by identifying the three key limitations of traditional approach, and 
categorized them as insomnia, amnesia and acalculia. We propose 
solutions for each of the limitation, and show that our solutions are 
orthogonal with respect to each other; hence they can be employed 
in unison. 
Based upon experiments which were carried out on real signatures 
sets drawn from a collection of widely used networking systems, we 
show that our solutions are indeed effective. It can reduce the 
memory requirements of the state-of-the-art regular expressions 
implementations by up to 100 times, while also enabling a two to 
three fold increase in the packet throughput. We also pay adequate 
attention to several complications that appears in real networks, e.g. 
DoS protection, multiple simultaneous flows, and packet 
multiplexing. Therefore, we believe that the proposed solutions can 
aid in implementing network intrusion detection and prevention 
systems much more securely and economically. 
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