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ABSTRACT
There exists an extensive body of work, spanning more than
two decades, on congestion control schemes and signaling
mechanisms. The majority of prior work does not, however,
entertain the notion of network-assisted feedback for conges-
tion control. The scope of the remaining work has also been,
unfortunately, rather narrow: Some efforts limit themselves
to using weak signals (involving a few bits in the header)
and relying on receivers to reflect such signals to the sender;
few others maintain per-flow statistics or explicitly set the
rates the senders should use. Virtually all suggested network-
assisted congestion feedback mechanisms are ineffective, not
scalable, or limited to data-center contexts.

In this proposal, we exploit data-plane programmability of
P4 switches as well as hardware-supported priority classes to
present a novel network-assisted congestion feedback (NCF)
mechanism. The feedback entails NACKs that are directly
sent to the sender, and does not involve the receiver; it is,
hence, quick and efficient. We propose sending such NACKs
during periods of congestion to senders of elephant flows,
and outline a scalable approach to identify elephant flows.
Unlike prior work, NCF is applicable in both data-center as
well as Internet-wide scenarios.
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1 INTRODUCTION
Congestion control is responsible for avoiding congestion
collapse and is one of the most challenging tasks in the In-
ternet [5, 25, 29]. Effectively controlling the congestion is
becoming increasingly difficult, e.g., [3, 23], due to availabil-
ity of very-high-speed links, increases in traffic diversity and
burstiness, decreases in buffer sizes (relative to link speed),
and the needs of the congestion-control (CC) mechanism
to meet diverse goals. Today’s goals focus not only on fair
sharing of network resources, e.g., [35], but also on lowering
delays, maximizing throughput, and effectively solving the
Incast challenge (e.g., [3, 9, 11, 14]).

It is, therefore, not surprising that there is a large body of
work on congestion control, including numerous CC schemes
(e.g., Cubic [22], the default CC mechanism in Linux ker-
nels, and BBR [9]), congestion-signaling mechanisms (e.g.,
ECN [28]) and many data-center-specific (e.g., DCTCP [3],
pFabric [4], PCC [13, 14], QJUMP [20], NDP [23], Copa [6],
and Homa [36]) as well as application-specific CC schemes
(e.g., QUIC [30]). Huang et al. [24] presents an in-depth sur-
vey of this solution space. Recent approaches have also pro-
posed the use of machine learning algorithms to dynamically
tune the CC mechanism to achieve the optimal performance
in a given scenario [31, 45].
The idea of eliciting support from the network to im-

prove end-to-end CC schemes is not new (e.g., [2, 15, 27,
32, 37]). Scope of prior work in this space, however, has been
rather narrow: Prior efforts either restrict themselves to us-
ing only a few bits for signaling (e.g., ECN [42], SNA [18],
DECbit [43], and ATM [34]) or to setting explicit rates for
senders (e.g., [37] and RCP [15]). While the former is an in-
sufficient signal and also does not guarantee that the signal
will affect only the source(s) responsible for congestion, the
latter per-flow mechanism is simply not scalable. Even other
approaches that accommodate rich congestion signals (e.g.,
[27, 32]) rely on receivers reflecting such signals back to the
senders, implying a delayed congestion-feedback loop.

Among the reccurring takeaways of prior CC work are the
following four observations: (1) We require mechanisms to
handle both short flows and long flows, typically referred to
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Figure 1: Overview of the network-assisted congestion
feedback mechanism

as mice and elephants, respectively [1, 21]; while mice dom-
inate in terms of the number of flows, elephants dominate
by volume of data transferred [17]. (2) Sharing queues be-
tween elephants and mice adversely affects the performance
of flows and prioritization of traffic helps in alleviating the
issue [20]; today, priority classes and multiple queues are
supported even in commodity hardware. (3) Buffers should
be kept short to ensure short, deterministic delays. (4) Buffers
are getting shallow, i.e., their size relative to link speed is
getting smaller [3, 7].
With advancements and adoption of programmable data

planes [8], we propose a network-assisted congestion feedback
(NCF) mechanism that exploits the above observations and
offers an effective means to control congestion regardless
of whether it is in a data-center or Internet-wide scenario.
We exploit the programmability of today’s switches to iden-
tify elephant flows independent of queue length and send
explicit congestion notifications (NACKs) to the sender of
these flows for throttling them. We are, in a limited form,
resurrecting an idea similar to that of source quench [40] or
choke messages [38], but without the caveats and issues that
resulted in the deprecation of those old ideas (e.g., [19]). We
allay security concerns, e.g., switch overload, by highlighting
that the generation of the feedback signal (the NACKs) is
done entirely within the data plane.
We summarize the contributions of this proposal as fol-

lows. We maintain three separate queues—two for mice and
elephant flows, and one for control packets. We present a
technique to identify, at line rate, without maintaining per-
flow states, elephant flows using rolling sketches. We out-
line a simple work-conserving memory allocation scheme to
manage the memory reserved for the three queues. Lastly, in-
stead of dropping packets we use network-generated NACKs
to throttle elephant flows. The design of NCF (refer Fig. 1),
in our opinion, can ensure fair sharing of resources across
both mice and elephant flows, requires only short queues,
achieves high throughput, and tackles the Incast problem.
The design of NCF, furthermore, lends itself to be applicable
to both: data-centers and the Internet.

2 DESIGN GOALS
Traffic flows in the Internet can be broadly categorized into
two types: (a) elephant flows, which involve the transfer of a
relatively large volume of data and last for a relatively longer

duration; and (b) mice flows, which constitute the remaining
flows of shorter durations and data-transfer sizes. While the
users’ expectation is simply minimal flow-completion times
(FCTs), regardless of flow types, operators have to tackle at
least two key challenges: (a) realizing the best performance
from the existing network infrastructure; and (b) planning
and provisioning capacity when, and where, required; over-
provisioning hardware is not the panacea for all network
problems. To meet both the users’ and operators’ expecta-
tions, CC solutions have to meet several criteria.

• Fair sharing of resources: A key objective is to fa-
cilitate fair sharing of bandwidth between all flows including
both mice and elephant flows. In particular, elephant flows
should not progress at the cost of mice flows.

• Short queues or buffers. Network queues or buffers
allow a network element to handle transient traffic spikes
or congestion. Moreover, provisioning large buffers will not
solve these problems, and is typically undesirable, or in-
feasible, in practice. Large buffers, for instance, introduce
additional delays; for mice flows most of their FCTs will
constitute time wasted in such buffers. Provisioning large
buffers, especially for high-speed links, can be prohibitively
expensive: Per-port on-chip memory is rather expensive.

•Handling TCP Incast. Incast is the TCP performance
degradation issue that arises when a large number of senders
simultaneously send traffic to one receiver. Such a many-to-
one traffic pattern naturally arises in storage and distributed
systems (e.g., distributed file systems and map-reduce appli-
cations) [39]. Packet losses at the bottleneck link affectsmany
senders, all of whom then wait for a random period (typically,
one retransmission timeout of 200ms) before attempting re-
transmissions. Thus, the problem adversely affects not just
the FCTs of many senders, but also the completion time of
the distributed job or computation.

•Work-conserving design. Statically assigning prior-
ities or queue sizes for mice and elephant flows might not
suit different kinds of workloads or traffic patterns. Thus,
a work-conserving strategy is needed to maximize switch
throughput.

• Scalability. Tracking the state of every flow quickly
becomes infeasible in large networks [16], due to the required
amount of memory. It is, hence, crucial to avoid or minimize
tracking of flows to ensure scalability.

3 INSIGHTS
To meet the design goals outlined in the prior section we
exploit the following insights.

• Address the elephants. Elephant flows contribute
most to bytes transferred, albeit most flows in the Internet
are mice. While elephant flows are subject to congestion
control, mice flows (due to their size and duration) are not:

2



P4-enabled Network-assisted Congestion Feedback BS’19, December 2-3, Stanford, CA

Mice flows may fillup a network buffer or queue at any
time [26].

• Three queues suffice. It is well-known that sharing
a queue between elephant and mice flows adversely impacts
the FCTs of all flows [20]. Rather than statically assigning
flow priorities we estimate them online, in the data plane. We
show that three queues suffice to assist end-to-end conges-
tion control schemes. Note, that today’s switches and routers
offer hardware support for a small number of queues.

• Detect elephants in data plane. Data plane pro-
grammability facilitates the use of advanced data structures
such as sketches (e.g.,[10, 12]) to compute key statistics [47].
Essentially, detection of heavy hitters (or elephant flows) is
not feasible entirely in the data plane [44].

• Trim packets in data plane. The idea of trimming
packets, by stripping the payload, in data-center environ-
ments as demonstrated by [23, 41] can be reused even in an
Internet-wide context.

•Network (switches/routers) can initiateNACKs. Un-
til now, network assistance, for end-to-end congestion con-
trol, has been restricted to the use of adding and updating
one or two bits in a packet. Furthermore, since the network
is not directly signalling the sender, the sender relies on the
reflection of such signals by the receiver. P4 enables us to
send network congestion feedback directly to the sender via
NACKs, and, by removing the receiver from the feedback
loop, this can drastically reduce the feedback duration (and
sender’s reaction time).

• Dynamically allocate memory. Rather than stati-
cally allocating memory for a given network queue, switches
can dynamically manage the amount of memory allocated
to different queues (following a work-conserving design).

•Congestion signals independent of queue usage. It
is possible to send congestion signals to heavy elephants even
if they do not currently have any packets queued at a switch.

4 THE DESIGN OF NCF
In this section we discuss the implementation of NCF and
highlight our key design choices.

4.1 Rolling Sketches
Ideally, to quicklymitigate congestion experienced at a switch,
we must send congestion notifications to a subset of the ele-
phant flows inbound to the switch; recall, from §3, that ele-
phant flows are subject to congestion control, whereas mice
are not. Sending such notifications only to the sources (or
senders) of elephant flows necessitates the identification of
elephant flows, continuously, at any point of time. To this end,
we exploit the novel capabilities of P4 switches, namely the
capability to maintain counters and various kinds of sketches
at line rates [33, 44]. Specifically, we build and continuously
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Figure 2: Illustration of rolling counters

update, at line rate, a rolling (count) sketch that facilitates
dynamic identification of elephants without keeping state
for all flows.
The idea of rolling sketches are similar to that of rolling

counters. Sketches, in contrast to counters, provide good
estimates for the high-frequency items (in this case, the ele-
phant flows) while using very limited memory. Given our
objective to detect and track elephants, sketches are ideal
for our use case. The rolling sketches can also handle the
transition of mice flows into elephant flows, and vice versa.
Tracking flows. Wemaintain a counter ctfi per flow and time
window. Rather than tracking all time windows, however,
we maintain n windows with each representing a duration d .
These n windows then allow us to track of flow popularity
over a time period of up to d × n. At time t0, the 0th time
window is used to count the packets. The flow counters c0fi
capture, hence, the packets arriving within the time window
[⌊t/d⌋ ∗d, (⌊t/d⌋ + 1) ∗d]. More generally, the flow counters
c jfi capture packets arriving within the window [(⌊t/d⌋ − j) ∗

d, (⌊t/d⌋ − j + 1) ∗d]. In addition to these counters, we track
the total traffic within each time window j: Tj =

∑
fi c

j
fi
.

Detecting elephants. To check whether a flow fi is an ele-
phant, we define a function F that takes as input the per-flow
counters c jfi and the total-traffic estimates Tj and returns a
boolean. An average threshold-based (say, 5%) function, for
instance, is one simple example to realize F . In this example,
if a flow contributes more than 5% on average1 within the
last n time periods of duration d , we label it an elephant;
otherwise, we label it a mice. If time t crosses an interval
boundary, the current flow counters are moved from index 0
to 1, and the counting resumes on a set of newly initialized
counters.
Visualizing rolling counters. From left to right, the illustra-
tion, in Fig. 2, shows the states of three counters {c2, c1, c0}

1Another implementation of F could require an elephant to exceed the
threshold only in one or in all time intervals. There are, hence, many ways
to define F , and it can be customized based on our objectives.
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at different points of time. Right before the interval bound-
ary at t1, flows f2 and f3 contributed 1 and 8 packets (in the
column corresponding to c0), respectively. The flow f2 (f3)
contributed 5 (10) packets in the prior interval, and 10 (12)
packets in the oldest interval, which is two intervals prior to
the current interval. Both these flows would be labelled ele-
phants. Flow f1, in contrast, contributed nothing except for
the prior interval where it contributed 1 packet. Therefore, it
would be labelled a mice. Per this illustration, note that after
crossing the time interval t1, the counter values are “rolled”
over to the left; values in c0 are moved to c1, that in c1 to c2,
and c0 is re-initialized. The counter values at t2 indicate that
f2 has transitioned from being an elephant to being a mice,
while f3 has transitioned in the opposite manner.
From counters to sketches. Per-flow counters are not scal-
able due to amount of memory they require.We can, however,
use sketches [10, 12] to approximate the counts. We, there-
fore, replace the counters for each time period with a sketch
(e.g., a CountMin sketch) that provides approximate counts,
while requiring a small and fixed memory budget (regardless
of the number of flows tracked). The switch from counters
to sketches does not affect our ability to detect as well as
discriminate elephant flows from mice flows.

4.2 Queues
Since the relative size of buffers (i.e., size of the buffer relative
to link speed) in switches have been drastically decreasing [3,
7], we designed our CC mechanism to require only three
short queues. As a side-effect, flows experience only low and
deterministic delays.
We propose to use three queues: one for elephant flows,

one for mice, and one for control packets. To classify and
schedule incoming packets onto the queues, we do not re-
quire per-queue statistics. We rely, instead, on the sketches
from the prior section (§4.1). We suggest the following “rule-
of-thumb” reserved sizes for the three queues to ensure a
minimum bandwidth for the different packets. Allocate 10%
each to mice and elephant queues, and a maximum of 5% to
the control packet queue2. The remaining bandwidth is dis-
tributed in a work-conserving manner as needed. Our band-
width reservations together with using a work-conserving
scheduler ensures that elephant flows cannot starve mice
flows and vice versa.
We suggest to redistribute memory on demand and use

the reservations only when available memory becomes a
bottleneck. Our goal is to allow mice and/or elephant flows
to use up almost all available memory (up to a limit, e.g.,
95%), and consequently the bandwidth, if there are no other
packets in the switch.

2Multiple priority queues with bandwidth reservations are commonplace
on network switch hardware today.

4.3 Network-assisted Congestion Feedback
When congestion occurs at a switch, marked by the lack of
available memory for the queues, we send an explicit con-
gestion signal or feedback (rather than marking packets to
indicate congestion—à la ECN) to the source or sender. While
these notifications are based on the idea of packet trimming
from NDP [23], our design significantly diverges from that
of NDP: We generate a NACK from the trimmed packet and
send it directly to the sender. Both packet trimming and
NACK generation can be performed efficiently within the
data plane, using P4, as it only entails switching source and
destination endpoints (i.e., IP address and ports) and adding
a flag to mark the packet as a NACK.

By sending theNACK directly to the sender, we remove the
receiver from the feedback loop. Furthermore, we queue the
NACKs in the highest-priority control queue. Our congestion
notifications, as a result, can be expected to be even faster
than NDP and ECN and, thus, can significantly reduce the
sender’s reaction time. The NACKs should also help tackle
the Incast problem. A sender should be able to quickly reduce
its sending rate and, thus, ensure a fair sharing of the network
bandwidth. Lastly, NACKs also help the sender directly infer
which packet did not reach the receiver (as a result of the
trimming at the switch).

Although we do not combine multiple NACKs to the same
source, the overhead in sending multiple NACKs is likely to
be limited. Moreover, NACKs can be dropped if the network
is overly congested.

4.4 Utilizing NCF
The utilization of NCF simply depends on how the switch
memory is allocated between mice and elephant flows; mem-
ory required for buffering NACKs is minimal, since NACKs
only contain packet headers. Incast traffic, which constitutes
mainly mice flows, requires tilting the memory allocation
in favor of the mice queue. High-throughput elephant flows,
in contrast, require the opposite—more memory for the ele-
phant queue.
If support for Incast dominates that for high throughput

flows (a necessity in many data-center scenarios), load spikes
in mice packets should be accommodated. We may have to
allocate, under such circumstances, more memory to the
mice queue by reclaiming buffer from the elephant queue.
Reclaiming memory entails dropping packets from the con-
cerned queue. In this case, we also generate NACKs and send
them to the sender via the control queue.

An obvious disadvantage of the above approach is that we
only throttle elephant flows that currently have packets in
the elephant queue. This strategy might not always result
in throttling the most appropriate flows. Alternatively, we
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can supplement our rolling sketches (refer §4.1) with a pri-
ority queue to retain information about the top N (say, 20)
elephant flows within the last n × d time period. In case of
congestion, we can then send NACKs for these top elephant
flows, regardless of whether they currently have packets in
the queue, until the load across the switch decreases.
In order to avoid attacks, where an attacker might use

a lot of mice flows to cause packet drops across elephant
flows, we limit such throttling to a short time period. Note,
we know how many mice packets have been handled within
the last n ×d time period, which should exceed a multiple of
the expected RTT. If we observe that mice flows are using
too many resources, we can again re-allocate the memory to
maintain a balance between all flows.

5 DISCUSSION
NCF does not obviate the need for CC schemes; rather it
calls for the control loop to simply acknowledge an explicit
signal from the network concerning congestion. Unlike prior
work, NCF targets only elephant flows for such signals to
simplify the design while maximizing effectiveness as well
as scalability. We briefly outline a few key design choices and
tradeoffs that require a thorough examination in the future.
Tuning control knobs. The presentation of NCF design (§4)
includes various recommendations or “thumb-rules” on the
choice of thresholds, queue sizes, and data structures. These
recommendations can be refined empirically via extensive
experiments against a host of CC schemes (e.g., via Pan-
theon [46]) or adjusted based on the needs and expectations
of a network operator, or even dynamically altered using
off-the-shelf machine-learning tools.
Interplay of control loops. There is a rich body of work,
spanning decades of time, on congestion-control schemes
which include awide spectrum of optimizations for detecting,
mitigating, and avoiding congestion on the path between the
sender and receiver. Even though NCF technically does not
introduce an additional control loop, the sending of NACKs
to the sender shortens the control loop and its impact on ex-
isting CC schemes at the endpoints requires a thorough eval-
uation. However, we expect that congestion control schemes
at the endpoints can be simplified or made more efficient by
taking into the account the explicit network information via
the NACKs.
Security considerations. We acknowledge that the ability
to control a sender’s rate via NACKs raises a few security
concerns, similar to that of “source quench” [19]. We note,
however, that the likelihood of a flow getting affected de-
pends significantly upon its duration. Only the small fraction
of elephant flows are likely affected. Moreover, an attack re-
quires the attacker to guess the five tuple identifier as well as
the sequence number. The attack is, hence, no different from

generating fake or duplicate ACKs—NCF does not per-se in-
troduce any new problems. Since the NACKs are generated
at line rate within the data plane, we do not introduce any
new opportunity (vulnerability) to overload the switch.
Congestion visibility. The visibility of NACKs to any third-
party, who can observe the traffic, might be immensely help-
ful in both research and practice. Since the feedback (i.e.,
NACKs) are generated in the data plane, at the switch where
congestion was experienced, there is no fundamental limi-
tation restricting us from augmenting the feedback signal
with additional information (e.g., the switch identifier or IP
address). These supplementary information, however, may
leak information about which networks are experiencing
congestion, and also where; operators do not have strong
incentives for providing such supplementary data.

6 CONCLUSION
A host of techniques have been explored until now to provide
an effective solution for congestion control. Virtually all
prior work have either never considered including network
assistance in the end-to-end congestion control process or
limited the use of such signals to one or two bits (e.g., ECN)
or their applicability to data-center or layer-2 environments.
We leveraged hardware support in switches for a few

queues and the increasing adoption of P4 to present a network-
assisted congestion feedback mechanism. Our design uses
only three queues in a P4 switch and proposes NACKs as an
explicit network congestion feedback. We exploit the capabil-
ities of a P4 switch to dynamically track elephant flows and
throttle them, as required, using NACKs. The NACKs, sent
directly to the sender, are expected to arrive at the sender
faster than prior work (e.g., ECN and NDP) and should sig-
nificantly reduce the sender’s reaction time. Lastly, NCF is
applicable in both data-center and Internet-wide contexts.
We intend to follow up this proposal with prototype imple-
mentations on P4 switches and evaluate the various design
choices and parameters.
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