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ABSTRACT

Geolocation systems generally fall into two categories. Com-

mercial systems provide precomputed address-to-location map-

pings for all IP addresses. We refer to such systems as ge-

olocation databases. Upon presenting a geolocation database

with a target IP address, a location estimate is provided im-

mediately. Almost all systems reported in the academic lit-

erature, on the other hand, employ active measurements, is-

suing probes to a target after it has been specified, but be-

fore estimating the location of the target. These systems use

constraints derived from the measurements to improve the

accuracy of their predictions. Both approaches have their

advantages. The active measurement approach may be more

accurate, while the geolocation database approach is not in-

trusive and can answer queries quickly, even when off-line.

This paper presents Alidade, a geolocation database system

that makes extensive use of available network measurement

data, but does not issue any probes of its own, either be-

fore or after a target is presented. Like other geolocation

databases, Alidade precomputes location estimates for all of

IP space. Indeed, using the available constraints, Alidade

computes a joint solution for all addresses. We demonstrate

that Alidade is competitive with the best commercial sys-

tems – on their own terms – using six different ground-truth

data sets. Alidade also provides stronger guarantees of cor-

rectness, and each of Alidade’s predictions consists of a ge-

ographical region in addition to a representative point.

1. INTRODUCTION

This paper introduces a new geolocation system called

Alidade. Geolocation systems accept queries of the form,

“Where is 128.2.205.42?” and then provide predictions, such

as, “128.2.205.42 is in Pittsburgh, Pennsylvania.” The ge-

This research was supported in part by AFRL Grants FA8750-11-
1-0262 and FA8750-10-2-0193.

olocation problem has been studied extensively by the net-

working research community, and we forgo the customary

explanation of its importance. Alidade, however, is funda-

mentally different from previous systems described in the

academic literature because it computes predictions for the

entire IP address space and does not issue any measurement

probes of its own, either before or after it is presented with

queries. Instead, Alidade fuses available data sets of various

types, attempting to resolve conflicts in the data and to find

mutually compatible solutions for all addresses.
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Figure 1: Comparison of Alidade’s geolocation accuracy

with six commercial geolocation databases

Commercial geolocation databases also provide precom-
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puted answers for all IP addresses. Like Alidade, the com-

mercial products do not issue any probes when presented

with geolocation queries. Alidade competes head-to-head

with these databases, and, as Figure 1 shows, outperforms

even the best of them on a large ground-truth data set pro-

vided by a Tier-1 ISP. We compare and contrast Alidade’s

geolocation accuracy with that of six other geolocation database

systems: EdgeScape (ES), MaxMind GeoCity (MM), Max-

Mind GeoCity2 Lite (MML), DB-IP (DBIP), IP2Location

(IP2L), and IPligence (IPLG). EdgeScape is a leading com-

mercial geolocation database and is an Akamai offering. As

part of our collaboration with Akamai, we had full access to

all of the data that EdgeScape uses and full knowledge of the

algorithms used by EdgeScape, and yet have found it a great

challenge to improve significantly on its results.

As part of the evaluation, the systems were presented with

100,000 targets sampled uniformly at random from the ground-

truth data set. Figure 1 shows the error distance (in km) on a

log-scale along the x-axis and the Empirical Cumulative Dis-

tribution Function (ECDF) of these errors along the y-axis;

we define error distance as the distance between the point-

based prediction made for a target address and its ground-

truth location. Alidade outperforms the other six systems

with 79% of its targets geolocated to within a 10km error.

Because the exact methods used to compile the commercial

databases are proprietary, we do not know for certain why

Alidade is more accurate.

Our analysis of Alidade includes a breakdown of how

much each type of data aids in making accurate predictions.

Not surprisingly, no single source of data suffices to make

good predictions. The data sets ingested by Alidade include

latency and path measurements collected for other purposes,

e.g., traceroute data from iPlane [21] and CAIDA’s Archipelago

(Ark) measurement infrastructure [4], and client-server round-

trip times measured by a Content Delivery Network (CDN).

Alidade also relies on a tool called HostParser that trans-

lates domain names into geographical locations, much as

the Undns tool [28] does. To provide coverage over the en-

tire IP address space, Alidade leverages data from the Inter-

net registries too. The extent to which the registry entry for

an address is trusted is mitigated by the position of the cor-

responding Autonomous System (AS) in the AS hierarchy

produced by CAIDA [5].

At its core, Alidade is a constraint-based passive geolo-

cation system, inspired by Octant [31], but able to incorpo-

rate a wider variety of non-measurement data sources. Ali-

dade uses latency measurements only when they are issued

from hosts with known geographical locations, e.g., Plan-

etLab nodes. We call these hosts and/or their IP addresses

landmarks. Alidade’s estimate of the location of an address

with an unknown location, which we call a target, is rep-

resented as a polygonal region on the surface of the Earth

that should (if the prediction is correct) contain the address.

The predictions made by commercial geolocation systems,

in contrast, generally consist of a single latitude-longitude

point or the name of a city or country. To facilitate a com-

parison with these systems, Alidade selects a single point to

represent the polygon region. Although sophisticated tech-

niques based on population density maps could be used to

pick the representative point, at present Alidade just uses a

set of heuristics that select the center of some city contained

in the answer region.

Figure 2 shows an example of an answer region computed

by Alidade. The region bounded by the dark green line rep-

resents the area resulting from intersecting constraints de-

rived from latency measurements. In this example the inter-

section happens to be a circular region. The polygon in blue

is a country-level hint (Germany) inferred from one of the

Internet registries. Since the registry data does not conflict

with the contraints derived from the measurements, Alidade

uses it to further refine its prediction. In this example, Al-

idade has also identified a city-level hint (Kaiserslautern, a

district in the Rhineland-Palatinate state of Germany) by ex-

amining the names of the routers on a traceroute path to the

target. The city-level hint is indicated in the figure by the

tiny red polygon inside the larger blue one. Ultimately Ali-

dade pins the target in this demonstration to Kaiserslautern,

which is consistent with the ground truth location of the tar-

get.

Figure 2: Example of a prediction made by Alidade for a

target.

To process large volumes of data, Alidade is structured

as a map-reduce (Hadoop) application. (Indeed, we started

by porting Octant to Hadoop.) We conducted our experi-

ments using a cluster of 40 8-core servers, each with 32GB

of RAM. Each component of Alidade exhibits “embarrass-

ing parallelism” and is implemented as a map-reduce job. In

a later section we provide a breakdown of where the Alidade

application spends most of its time, e.g., in “preprocessing”

measurement data.

2. RELATED WORK

Past work on IP geolocation can be loosely categorized

into active approaches that perform on-demand network mea-

surements to derive constraints on a target’s geographic lo-

cation, and passive approaches that rely only on previously
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collected information to geolocate a target. Both approaches

have advantages and disadvantages. Active approaches may

be more accurate, but predictions may not be available un-

til new measurements have been taken. Passive approaches

can precompute predictions and hence answer queries im-

mediately, without even requiring network access at query

time. Importantly, passive approaches are also unobtrusive,

and do not risk alerting or annoying the target of a predic-

tion. But passive approaches may not have the target-specific

measurement data that would enable better accuracy.

Alidade takes a passive geolocation approach, but Ali-

dade does not rely exclusively on coarse-grained and po-

tentially error-prone data, such as the WHOIS database and

hostname-to-location hints. Instead, Alidade filters the hints

provided by these data sets by applying constraints derived

from large volumes of passively collected network measure-

ments.

In the following sections we examine both active and pas-

sive approaches, noting where Alidade borrows techniques.

2.1 Active Approaches

Much of the prior work in geolocating IP addresses relies

on on-demand network measurements. IP2Geo [26] is an

early IP geolocation system that introduces two active IP ge-

olocation techniques. The first technique is GeoPing, which

requires a deployment of landmarks of known geographic lo-

cations that can perform all-pairs latency measurements. To

predict the location a target, all landmarks probe the target.

GeoPing then selects the landmark that has the most similar

latency profile (the set of latency measurements from other

landmarks) to the user-specified target. It then uses the land-

mark’s location as the prediction for the target. Although

this technique is simple and easy to deploy, the location of a

target cannot be accurately predicted unless there is a land-

mark nearby and that landmark has a similar latency pro-

file. At present, Alidade doesn’t compile latency profiles

or compare the latency profiles of targets and landmarks.

The second technique is GeoTrack, which performs tracer-

outes from landmarks to the target to discover routers on the

traceroute paths whose DNS names can be interpreted geo-

graphically. From this set of routers, GeoTrack locates the

target at the closest router’s location, where distance is de-

termined in terms of estimated network latency. Alidade’s

“extrapolator” applies a variation of this technique. By rely-

ing only on this relatively incomplete data source, however,

GeoTrack’s geolocation accuracy is inconsistent.

In contrast to locating the target at the closest landmark

or router, Constraint-Based Geolocation (CBG) [14] deter-

mines the location of a target by creating circles on the sur-

face of the earth around each landmark, where each circle

represents a constraint that bounds the possible location of

the target. The size of each circle is a function of the latency

between the landmark and target. CBG combines constraints

by intersecting the circles, and selects the middle of the in-

tersection as its best estimate of the target’s location. One

risk in taking this approach is that a single corrupt measure-

ment can lead to an empty intersection. At its core, Alidade

is a CBG approach.

Octant [31] builds on CBG by providing a general frame-

work that can combine both positive and negative constraints,

that is, information on where the target is likely and unlikely

to be, respectively. To handle uncertain or error-prone data

sources, Octant combines constraints using a weight-based

mechanism that can limit the impact of erroneous measure-

ments. Alidade builds on the Octant framework. In order

to process large volumes of measurement data and to ge-

olocate all of the IP address space, Alidade restructures the

framework into a parallel Hadoop application so that more

memory and compute cycles can be applied.

Topology-Based Geolocation (TBG) [18] uses traceroutes

from the landmarks to the target to discover the routers along

the network paths and determine inter-router latencies. With

this data, TBG performs a global optimization to find a phys-

ical placement of the routers and the target that minimizes

inconsistencies with the network latencies. By attempting to

globally optimize the placement of both the routers and the

target, TBG is more sensitive to measurement errors, such

as inflated latencies, than constraint-based solutions, where

errors tend to be more localized. To some extent Alidade ap-

plies this approach too. In particular, Alidade uses all avail-

able estimated latencies between pairs of addresses (land-

marks, routers, and end hosts) to jointly predict the locations

of the routers and end hosts.

Several systems [11, 32, 2, 19] have applied statistical ap-

proaches to construct landmark-specific functions that map

measured latencies to geographical distances. These sys-

tems generally have significant computational requirements,

and are currently unable to make use of non-latency-based

constraints. Posit [10] presents a more recent statistical ap-

proach that, while still requiring active measurements, is

able to significantly reduce the required number of on-demand

probes by precomputing a statistical embedding. At present,

Alidade does not construct a sophisticated model of the re-

lationship between latency and distance. Instead, Alidade

uniformly assumes that datagrams travel at two-thirds the

speed of light, which is very close to the speed of light in

optical fiber. Hence, in converting latency to distance, Ali-

dade does not model circuitous fiber paths, nor does it model

queuing delays or any other sorts of delays. The resulting

constraints tend to be loose, but they are also hard. In par-

ticular, provided that no measurements are corrupt and no

faster-than-fiber technologies, such as microwave transmis-

sion, are employed, the intersection of a set of constraints

derived by Alidade from direct latency measurements must

contain the actual location of the target. Other work has sug-

gested that if latency is to be converted to distance by a sim-

ple multiplicative factor, four-ninths the speed of light might

be used. The smaller constant leads to smaller intersection

areas, but these areas might be empty or might not contain

the target.
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Guo et al. [15] propose mining physical addresses dis-

played on publicly accessible Web sites that are hosted by

Web servers with IP addresses in the same prefix as the tar-

get address, and using these physical addresses as hints to

improve geolocation accuracy and as sources of ground truth

to support evaluations. Caruso [6] (as part of the Alidade

project) and Wang et al. [29] extend this approach by com-

bining the mined information with latency measurements

to offer finer-grained geolocation results. Although these

systems produce accurate results in certain experiments, it

is difficult to ascertain their actual effectiveness in general.

First, it is tricky to determine when an organization is host-

ing its own Web site. Furthermore, even when an organi-

zation does host its own site, for the technique to work the

site must list a physical address that is close to that of the

hosting location. In previous experiments the best results

were obtained when the set of geolocation targets were bi-

ased towards belonging to organizations that typically host

their own Web servers and publish physical address infor-

mation on their web pages, e.g., in one experiment reported

in [29], university Web servers hosting Web pages listing

campus addresses were used as landmarks and PlanetLab

nodes were used as targets. Nevertheless, scraped address

information from locally-hosted Web sites is a rich source

of geographic data, and Alidade includes this information as

one of its many data sources.

Gill et al. [13] propose two broad classes of attacks on ac-

tive measurement-based geolocation approaches. The first

misleads geolocation systems by injecting delays to latency

probes from specific landmarks at the target, thereby alter-

ing the geolocation result by moving the centroid of the con-

straint intersection in a CBG-based approach. The second

targets topology-aware geolocation approaches by altering

inter-router latencies in traceroutes, which enables power-

ful adversaries to place geolocation targets at arbitrary lo-

cations. Alidade does not attempt to detect possible adver-

saries. Unlike active approaches, however, where latency

probes can often be easily identified, Alidade also uses a

large body of passively collected measurements that piggy-

back real user TCP connection requests and replies. Adver-

saries must therefore delay legitimate TCP traffic rather than

just latency probes in order to distort much of Alidade’s in-

put data.

There has also been considerable work on using active

measurements to assign artificial coordinates to Internet nodes.

The latency between a pair of nodes is then estimated by

computing the distance between the two nodes in the arti-

ficial coordinate space. GNP [25] is a pioneering work in

this area. GNP embeds nodes into a low-dimensional Eu-

clidean space, where the distance between two nodes in the

space approximates the network latency between the nodes.

There is no guarantee that the artificial coordinates map in

any natural way to the true physical locations of the nodes

on the surface of the Earth, however, nor is this a goal of

GNP. Building on GNP, Vivaldi [8] introduces a decentral-

ized network embedding approach that obviates the need for

fixed landmarks. Meridian [30] introduces an overlay rout-

ing approach to solve network positioning problems without

needing to perform an explicit network embedding. This en-

ables Meridian to avoid intrinsic network embedding errors.

Alidade (whose goal is not to predict latencies) does not have

much in common with these approaches.

2.2 Passive Approaches

Although active geolocation approaches can be highly ac-

curate, their dependence on performing on-demand network

measurements make them unsuitable for many location-aware

applications. Most commercial geolocation systems, such as

MaxMind GeoCity [22], EdgeScape [1], IPInfoDB [17], and

HostIP.Info [24] have instead adopted passive approaches,

where they offer their users a pre-computed IP-to-location

database that can identify a target’s location without addi-

tional network access. Unfortunately, the exact methodology

for creating these databases are generally proprietary; only

the expected accuracy of these databases are typically pub-

lished. However, the common understanding is that these

databases rely on a combination of domain registry infor-

mation, ISP provided data, host name hints, latency mea-

surements, and other heuristics. Alidade relies on many of

the same sources, except that the ISP-supplied ground-truth

geolocation data (from one Tier-1 ISP) is used only for eval-

uation purposes and not as an input to Alidade.

Poese et al. [27] performs an analysis of the accuracy of

commericial geolocation databases. They report that while

geolocation databases are extremely accurate at the country

level, they perform poorly at the city level. Note that Poese

et al. did not analyze EdgeScape (or Alidade).

In addition to GeoPing and GeoTrack, IP2Geo [26] also

introduces GeoCluster, a passive approach that partitions

the IP address space into geographically co-located clus-

ters. GeoCluster then assigns each cluster to a geographic

location based on the geographic information extracted from

user registration and usage databases. The effectiveness of

this approach is largely limited by the availability of such

databases, the geographic coverage of the users in the databases,

and the accuracy and freshness of the self-reported user lo-

cation information. At present, no such data is available to

us, but if it were, it could be used as an input to Alidade.

3. SYSTEM DESIGN

We built Alidade to assimilate data that is large in volume

and rich in diversity. Alidade consists of many components,

each of which is designed as a map-reduce job. The com-

ponents are composed into a pipeline, with the intermediate

results persisted using HDFS and HBase. Figure 3 shows

a high-level overview of the system; Alidade’s components

are indicated by the red blocks and the ordering of these in

the illustration, from left to right, corresponds with their po-

sitions in the system’s pipeline. In the rest of the document,

the term Alidade refers to this pipeline or workflow in its
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entirety.
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Iterative 
Solver

Extrapolator Preloader Aggregator QueryEngine
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Figure 3: Alidade: System Overview

3.1 Preprocessor

To exploit measurement and non-measurement data sets

already available from various projects, and consequently,

avoiding active probing within Alidade, the system is de-

signed to accept a wide variety of inputs. Typically, the in-

put comprises of ping measurements, traceroute data, Host-

Parser answers, and Internet registry information. The pre-

processor processes the input measurement data and con-

verts them into a standardized internal format. The conver-

sion to an internal format, to some extent, allows compo-

nents further down the pipeline to be oblivious to the hetero-

geneity in input.

The I/O bound preprocessing phase represents the most

time-consuming component of Alidade. In the experiments

described in this paper, eight hours was typical. This map-

reduce job, however, needs to be run only once against any

input data. In addition to the parsing and transformation

functions, the preprocessor summarizes the distribution of

measurements (latencies) between a pair of landmark and

target, by a single value, which we use as an approxima-

tion of the actual latency between the pair. The preproces-

sor does not necessarily pick the smallest latency from the

distribution of observed values. Typically, the preprocessor

chooses the median latency; the choice, however, can shift

to the mean or the minimum, depending on the distribution

of observed round-trip times.

Our concerns about using the minimum measured latency

were fueled by an analysis of measurements recorded by the

iPlane [21] project on the PlanetLab platform over several

years. Using the ground truth locations reported for the Plan-

etLab nodes, we computed the minimum latency possible

between each pair of nodes. For each pair, the minimum (or

threshold) latency value is computed by taking the true dis-

tance between the two nodes over the surface of the Earth

and dividing by two-thirds the speed of light, which is the

speed of light in optical fiber. We then scanned the data

for all traces in which the recorded latency is smaller than

the threshold by at least 10ms. Figure 8 provides a CDF of

the iPlane traceroute measurements with such speed-of-light

violations for 2010 and 2011. In 2010 there were 95,188

such measurements, in 2011 there were 4,031. The x-axis,

in log-scale, shows the magnitude of error, i.e., the value by

which the observed latency in the traceroute is smaller than

the computed threshold. Errors in the reported ground truth

locations of landmarks are a known cause for measurement

inconsistencies, and we discovered several errors in the re-

ported locations of PlanetLab nodes. But most errors could

not be explained by bad reported locations. For example, the

vast majority of the 2010 errors originated at Peking Univer-

sity, while the vast majority of the 2011 errors originated at

USC ISI, both of which report their locations correctly. In

summary, the plot provides a warning against simply using

the minimum observed latency.

Preprocessor’s outputs are persisted in HDFS as serial-

ized binary objects. Output consists of an observation for

every landmark and target pair observed in the input data

sets. Observations are categorized into two classes: direct or

indirect. Direct observations are latency measurements re-

ported directly or explicitly by latency-based measurement

tools, viz., ping or traceroute. Indirect observations are in-

ferred latencies between intermediate hops on the path taken

by a packet from a source to destination; Figure 4 shows di-

rect latencies in red, and indirect in blue, on a path revealed

by a tool like traceroute. The indirect observationBC, in the

illustration, is computed by taking the difference between di-

rect observations AC and AB. Path asymmetries and queu-

ing delays along the path often introduce errors in indirect

observations, including negative latencies!

3.2 Iterative Solver

The iterative solver reads the observations output by the

preprocessor and combines them with non-measurement data,

viz., HostParser answers. The solver geolocates all targets

observed in the input, in parallel, in a map-reduce job. Lo-

cation estimates are regions formed by intersecting two or

more constraints, and improved with non-measurement data,

if any. The estimates are persisted in HBase and refined fur-

ther in each iteration. Each iteration executes the same se-

quence of functions – derive constraints from observations,

solve the constraints and combine the solution with non-

measurement data. Iterations after the first, also read as in-

puts the answers generated for targets in the previous itera-

tion. We typically iterate the solver three times, after which

the gains from iterations seem to increase only marginally.

Direct measurement data take the highest precedence amongst

data sources used in Alidade; non-measurement data that do

not overlap with the direct measurements are therefore dis-

carded, without exception.

To derive constraints from latencies, Alidade multiplies

them with two-thirds the speed of light. The constraint is

an N -sided polygon, with N typically set to 32. The center

of the constraint is the location of the source of the obser-

vation. Generating a constraint from a direct observation is

straightforward, since the source is a landmark; the location

of a landmark is known a priori. Assume, for instance, that a

network probe takes a path from landmark A to target C via

an intermediate hop B, and another that starts at landmark

5



A B C

Figure 4: Observation Types
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Figure 5: Direct Constraint
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Figure 6: Indirect Constraint

D and reaches C, in a single hop. The constraints for tar-

gets B and C using the direct measurements from A would

be polygons centered at A and sized proportional to the la-

tencies observed, as shown in Figure 5. The illustration also

shows the intersection of two constraints, one from A and

the other from D, generating a location estimate for C; note

that although the illustration makes use of circles for con-

straints, Alidade represents them as polygons.

An indirect observation cannot be used in the first iter-

ation, because the location of the source of observation has

not been estimated until after the first iteration. For later iter-

ations, the location of the source of an indirect observation is

available, but unlike the location of a landmark, it takes the

form of a region bounded by a polygon. To generate con-

straints to a target from an indirect observation, the polygo-

nal region is dilated by a distance proportional to the indirect

latency. The intersection of indirect and direct constraints

results in a smaller area, refining the location estimate from

the previous iteration. Figure 6 illustrates the derivation and

use of indirect measurements. Since the source of an indirect

observation is also a target, whose location changes after the

first iteration, each iteration, theoretically, refines the esti-

mates for all targets with indirect observations. Octant [31]

was the first system to demonstrate the technique of exploit-

ing indirect measurements to improve geolocation accuracy.

3.3 Extrapolator

Extrapolator attempts to guess the city location of a tar-

get by looking at the names of the routers on a traceroute

path to the target. It applies the heuristic that if two hops

on a traceroute are close to one another (have few hops in

between and a short estimated latency), then they are likely

to be located in the same city. Hence, a hint for the loca-

tion of a target can be determined by scanning a traceroute

to the target backwards to find the first router with a loca-

tion hint. Assuming that this router is close to the target,

extrapolator copies the router’s hint to creates a location hint

for each of the hops on the trace from the router to the tar-

get. In our analysis of traceroute data, we found that loca-

tion hints from routers farther than eight hops from a tar-

get or with an indirect latency greater than 60ms were most

likely erroneous. Alidade guards against erroneous extrapo-

lator hints for a target by checking them for consistency with

constraints on the target’s location derived from direct mea-

surements. Extrapolator is one of the more time consuming

stages in the pipeline. In our experiments this stage typically

took an hour and a half to two hours to complete.

3.4 Preloader

The preloader map-reduce job updates the results database

with HostParser answers for targets that have no location

estimates at this point in the pipeline. The input data for

preloader consists of the complete HostParser data set, con-

taining answers for approximately 700 million IP addresses.

Less than half of these answers, approximately 211 million,

are at city level. Targets with city-level answers from host

parser are treated as equivalent to having ground truth, un-

less they have contradicting latency measurements. When

measurement data is available for a target, they always take

precedence over any non-measurement data that exist for the

same. Preloader is the first component in the pipeline that

is concerned with geolocating targets with no measurement

data. The answers populated by the preloader, prime the sys-

tem for generating better answers for the entire routable IP

space. Preloader is also fairly time consuming, averaging

about forty-five minutes to one hour in our experiments.

3.5 Aggregator

Aggregator summarizes the location predictions that have

been made in previous stages of the pipeline for IP addresses

within a prefix. It applies the heuristic that addresses in the

same prefix are likely to be close to each other geograph-

ically, and uses these summaries to make predictions for

other addresses in the prefix that lack predictions from ear-

lier stages in the pipeline. Rather than examining every pos-

sible prefix (of every length), aggregator builds a prefix tree

containing the minimum number of prefixes needed to cap-

ture the addresses for which predictions have been made in

earlier stages. In particular, the tree is pruned so that it does

not contain any two prefixes that contain the exact same set

addresses for which predictions have been made earlier. The

answers for the addresses within a prefix are either overlap-

ping or non-overlapping, resulting in an aggregate intersec-

tion or aggregate union, respectively.

For a target without measurement data, the longest prefix

containing the target provides an initial location estimate.

The initial estimate, can be revised later depending on what

other non-measurement data is available for the target. For
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instance, availability of a city-level HostParser takes priority

over any aggregate. Aggregates are also applied to targets

with measurement data. Measurements available for a target

are used as a filter to discard inconsistent answers in the ag-

gregate. Put in a different way, aggregates are recomputed

for targets based on the initial measurement-based estimates

available for them. Section 4 includes results on improve-

ment in geolocation accuracy from use of aggregates.

3.6 Query Engine

The query engine provides an interface through which lo-

cation estimates generated by the system can be queried and

output. Queries can retrieve answers for either specific tar-

gets or a subnet. For answers with measurement data, the

querying process is a straightforward lookup of results com-

puted for that target from the database. The querying engine

also uses aggregates containing the target to further improve

this initial location estimate. Alidade assigns the highest

precedence to measurement data, and the initial estimates

computed using measurement data can be used to effectively

trim inconsistent answers in an aggregate; if the set of an-

swers in a prefix that’s consistent with the measurement data

available for the target have more specific location hints, say

at city-level, then the combination might improve the geolo-

cation accuracy.

The querying process for a target with no measurement

data is more involved. The initial estimate for such a target is

an aggregate that contains the target. However, the query en-

gine can override this estimate with non-measurement data

from HostParser or registry, both of which have higher prece-

dence compared to the aggregate; in such scenarios, the non-

measurement data becomes the new initial estimate. This

initial estimate is refined further by looking for answers from

larger subnets (shorter prefixes), if necessary. It is possible,

for instance, that the shortest subnet (longest prefix) used to

generate the initial estimate does not have a city-level an-

swer. In such situations, the query engine scans for larger

subnets, provided that such aggregates contain fine-grained

answers.

3.7 Exploiting Registry Data

Various stages in the Alidade pipeline make use of hints

derived from the Internet registries. One difficulty with ex-

ploiting registry data is that the operator of a network that

spans a large geographical area may list a single physical ad-

dress, which should not be trusted equally to a registry entry

for a small regional network. Alidade uses a network’s posi-

tion in the Autonomous System (AS) hierarchy to augment

decisions to ignore a registry entry, or trust it for a country

or city-level hint.

AS hierarchy information is taken from CAIDA’s AS Rank-

ing project [5] [20] and is combined with Alidade’s Internet

Registry data. Internet Registry entries are mapped to BGP

ASes by analyzing AS Path information from routing tables.

Consistent paths from multiple landmarks indicates a clear

Figure 7: Shape Simplification

origin AS. Entries with ambiguous origin are often transit

networks and are generally ignored by the registry module

since they have unclear localization. Alidade’s also use a

network’s prefix size for hint decisions in addition to it’s AS

rank. These metrics allow us to identify low tier and stub

networks advertising small prefixes, which have consistently

strong [12] localization.

Internet Registry data may be checked for any IP address

referenced by Alidade. For a large job this could result in

hundreds of millions of queries to Alidade’s Internet Reg-

istry datastore. Minimizing the latency of registry queries

can therefore have a significant impact on Alidade’s run-

time. In order to maximize efficiency, Alidade instantiates

a PATRICIA trie [23] within each task JVM in the cluster.

PATRICIA tries take advantage of the hierarchical nature of

IP address space improving latency and memory utilization.

To ensure consistency across the cluster, Registry data is de-

livered using Hadoop’s DistributedCache system.

3.8 Matching City Names to Shapes

A non-trivial problem encountered when exploiting data

sources containing city name hints is to convert these names

into shapes. Alidade’s registry database and HostParser table

contain more than 100,000 locations (and associated coordi-

nates) from every country/region on Earth. Location names

are listed as compact ASCII strings consisting of ISO two

digit country and region codes followed by the city/location

name. For example, DE-NI-OSNABRUCK is Osnabrück in

the German state of Lower Saxony (Niedersachsen). Map-

ping these location names to representative shapes is con-

ceptually simple, but nuanced in execution.

First, we compile our database from multiple open sources

including postal and census bureaus around the globe. The

two primary sources are TIGER/Line 2013 (United States)

[7] and GADM (worldwide) [16]. Once a source is loaded
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into the database, its location names are normalized in ASCII

format utilizing Unidecode [3] to allow comparison to en-

tries in our registry database. Conversion for Latin-based

languages is generally simple and error free, but translitera-

tion of non-latin languages is complex and often ambiguous.

Additionally, some location names are incredibly common,

such as San Isidro, which is used to name more than 300

locations in the Philippines. Finally, the centroids listed in

the registry database inject some ambiguity since they are a

limited representation of any location (cities vary greatly in

size and layout).

To address these sources of ambiguity we check spatial

proximity check between available shapes and the location’s

centroid. Second, we perform a Levenshtein string compari-

son to allow for spelling variations caused by transliteration.

Matches passing both checks are merged into a single shape.

In cases where no city-level match is available the system

returns a matching regional shape that maintains correctness

at the cost of accuracy.

Sources shapes have vertex counts ranging from hundreds

to hundreds of thousands and are a common input to Ali-

dade’s intersection calculations. In order to maximize Ali-

dade’s scalability and speed all shapes are simplified prior

to being loaded on the Hadoop cluster. In order to accom-

plish this task, we make use of an α-shape [9] algorithm. α-

shapes provide an efficient representation that significantly

reduces vertex counts, while minimizing the total area added

to shapes. Additionally, all generated α-shapes are closed

and form concave hulls, so no portion of a city is cropped

during simplification. Figure 7 shows the metropolitan area

of Neiheim, Germany. The input shape contains 866 ver-

tices. A simple convex hull requires only 32 vertices, but

adds significant area to the shape. In contrast, the α-shape

depicted consists of only 49 vertices and retains much of the

original shape’s characteristics. Furthermore, the α param-

eter can be tuned to achieve any desired tradeoff between

complexity and accuracy.

3.9 Additional Shape Sets

We have compiled a large set of shape files for the world’s

significant bodies of water. As with city and country shapes,

these water files must be simplified to allow efficient pro-

cessing. However, simply applying the same α-shape sim-

plification to bodies of water might expand their area, clip-

ping adjacent land masses. This is problematic since most

population centers, and hence target locations, are often con-

centrated in coastal areas. Thus, any simplification to a water

shape must only reduce its area. This can be accomplished

by allowing holes in α-shape calculation and then only re-

taining the interior ring of output shapes for use.

Initial testing of water shape use has revealed that they

have the greatest utility for targets with no country or city

level hints, since most country and city shapes already in-

corporate water boundaries. Additionally, we have discov-

ered that a small, but significant portion of tested location

predictions from commercial competitors are being placed

in coastal waters and that on rare ocassion predictions are

much futher from land. Alidade’s use of alpha shapes for

water areas helps strike a balance between efficiency and ac-

curacy in a manner unavailable to point based geolocation

systems.

4. EVALUATION

We evaluated Alidade by comparing its answers with that

of six commercial geolocation databases–EdgeScape, Max-

Mind GeoCity, MaxMind GeoCity2 Lite, DB-IP, IP2Location

and IPligence. In this section, we begin with an exposition of

the sources of ground-truth location information and the ex-

perimental setup. We follow up with a discussion of the eval-

uation results and show some of Alidade’s unique strengths.

4.1 Ground-truth Data

We use six different ground-truth data sets to compare and

contrast Alidade’s geolocation accuracy with the other ge-

olocation databases. Table 1 summarizes the number of IP

addresses available in each data set and the number of unique

locations, at approximately 1 km resolution, over which the

addresses are distributed. Locations of PlanetLab nodes, re-

ferred to as PLAB, is a commonly used ground-truth data set

in geolocation research. Although data set exhibits good ge-

ographic diversity, we show, in Section 4.3 that PLAB does

not help to adequately evaluate a geolocation system.

Data Set #IPs #Locations

PLAB 835 331

Ark 66 61

MLAB 882 36

GPS 152 139

NTP 99 77

EuroGT 23737281 73

Table 1: Summary of evaluation data sets

The Measurement Lab (MLAB) and CAIDA’s Archipelago

(Ark) infrastructure provide a rich ecosystem for networking

research, and they both offer a global network measurement

platform. The MLAB servers and Ark monitors are located

in various countries across the globe offering an interesting

diversity in ground-truth locations. In fact, although the Ark

monitors are fewer in number they are richer in diversity

compared to all other data sets: the 66 Ark monitors are lo-

cated in 36 different countries, making them an interesting

candidate for use in testing geolocation systems.

In Table 1, the term GPS refers to a set of IP addreses used

by GPS receivers to communicate their locations (and/or mea-

surements) to a base station over the Internet. These GPS re-

ceivers are part of a measurement platform employed by ge-

ologists to study continental drift. We refer to Network Time

Protocol servers with ground-truth location data as NTP in

the table. The GPS and NTP data sets are ideal for use in

testing passive geolocation systems because these data sets

enforce a strict policy against active probing.
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Figure 8: Measurement Errors
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Figure 9: EuroGT Baseline
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Figure 10: PLAB Baseline

The EuroGT ground-truth data is a list of city locations

for approximately 24 million IP addresses provided by a Eu-

ropean Tier-1 network provider. One pecularity of this data

set is that it contains only 73 distinct city locations, although

presumably this provider has infrastructure in more than 73

cities. In spite of the relatively low geographic diversity ex-

hibited by this data set, we demonstrate that the data set is

still a viable candidate for the head-to-head comparisons of

geolocation databases.

4.2 Experimental Setup

The database of IP-address-to-location mappings gener-

ated by Alidade was generated from a set of input data sets

that included both measurement and non-measurement data.

The non-measurement data consisted of HostParser hints for

approximately 700 million addresses, of which roughly 211 mil-

lion contain city-level predictions, location hints compiled

from various Internet registries, AS hierarchy data from CAIDA,

ground-truth locations of landmarks, and shape files for cities

and countries along with accompanying metadata.

Much of the measurement data for the experiment was

provided by a Content Delivery Network (CDN) and con-

sisted of traceroutes between CDN servers and hundreds of

thousands of resolving DNS servers collected over a period

of three months (recorded by the CDN for network mapping

purposes), traceroutes from CDN servers to a small frac-

tion of end user addresses collected over a period of three

to six months, one week of ping measurements from CDN

servers to routers (recorded by the CDN to estimate network

performance), and one month of round-trip latency values

recorded between CDN servers and end-user machines for a

small fraction of TCP connections. The database of results

created using these measurement and non-measurement in-

puts was used as input to the querying engine to geolocate

the targets in the evaluation data set. The database contains

predictions for approximately 900 million targets generated

using these inputs. The selection of targets for evaluation

was performed after Alidade’s database was finalized; Ali-

dade’s results had no influence on selection of targets for the

performance comparison.

We used the latest versions, updated in September 2013,

of all the databases except for MaxMind GeoCity, for which

the last update available to us was made in early June 2013.

This is one of the reasons that we have included two databases

from the same provider in our study. MaxMind GeoLite2

City, the free version of MaxMind, has also been widely

used in academic research for evaluation of geolocation sys-

tems. Alidade’s input data provided by the CDN is asso-

ciated with the third and fourth quarters of the year 2013.

Our objective is to align simply the different geolocation

database systems as closer in timeline as practically possi-

ble to ensure a fair evaluation.

We define error distance as the geographic distance be-

tween a system’s point-based prediction for a target and the

target’s ground-truth location. Although, Alidade outputs

polygonal regions as answers, it also computes a point-based

estimate, which is always contained in the polygonal region.

This enables a head-to-head performance comparison of Al-

idade with the other geolocation databases, all of which pro-

vide point-based predictions. Alidade uses various heuristics

to output a point-based answer. Picking the center of a city

enclosed by the polygonal answer, is an example of such a

heuristic.

4.3 Comparative Evaluation Results

We begin by analyzing the effectiveness of relying solely

on hints derived from the registry or from the names of the

Data Set #targets Coverage

PLAB 289 34.61%

Ark 0 0%

MLAB 0 0%

GPS 12 7.89%

NTP 7 7.07%

EuroGT 61,947 61.95%

Table 2: #targets with measurements
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Figure 11: PLAB Results
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Figure 12: MLAB Results

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 20 100 200 1K 2K 10K
Error Distance (in km)

E
C

D
F

AL

DB1

DB2

DB3

DB4

DB5

DB6

Figure 13: Ark Results

target addresses. These are the primary sources of non-measurement

data used by Alidade. Figure 9 shows the ECDFs1 of errors

for the complete 24-million-address EuroGT dataset using

only HostParser or registry. HostParser provides answers

to just a little over 20% of the targets; for targets with no

answers (approximately, 18 million) we assumed an error

distance of 10,000km. Registry, by comparison, performs

better, with a median error distance of 214km. The results

indicate that these two data sources alone are not sufficient to

make accurate predictions; in spite of the relatively low ge-

ographic diversity in locations EuroGT is still a challenging

data set for geolocation.

Many academic studies on geolocation have used Planet-

Lab nodes as the targets for evaluation, because their ground-

truth locations are known (with a few pernicious exceptions).

Figure 10 shows that the locations of many PlanetLab nodes

can be predicted to a high degree of accuracy using informa-

tion only from the registry or from HostParser. Marginally

better accuracy can be obtained by combining these two data

sets. Comparing Figures 9 and 10, we see that the registry

and HostParser are much more effective at predicting Planet-

Lab locations than at predicting targets from our Tier-1 ISP.

Hence using these PlanetLab nodes as targets for evaluating

geolocation systems that exploit registry information or host

names may lead to optimistic results.

For each evaluation we compute the error (distance) in

the prediction made by the different geolocation systems for

each target in a given data set. We evaluate the different sys-

tems by comparing the ECDFs of the computed error dis-

tances of each system against the others. To remain consis-

tent with the past geolocation studies, we first evaluate Ali-

dade’s geolocation accuracy against the PLAB data set. Fig-

ure 11 shows that Alidade’s median error distance is slightly

higher compared to DB4 and DB5; but, these databases have

significantly lower accuracy in the tail portion of the ECDF.

For approximately 40% of the targets, Alidade’s performs

better geolocation compared to the other geolocation databases.

1Plots use log-scale for the x-axis, unless mentioned otherwise.

DB1 is an exception with its geolocation accuracy being

slighly better than Alidade. In this and other data sets, DB1

remains highly competitive with Alidade and exhibits simi-

lar performance. We highlight certain key differences, if any

and reserve a detailed explanation of DB1’s performance to

a later section.

Surprisingly, in the PLAB results Alidade’s accuracy is

only marginally better than the baseline, shown in Figure 10.

We presume that this indicates lack of really short measure-

ments to improve upon the baseline estimates. Another plau-

sible reason could be that Alidade’s input provides measure-

ments to only 34.61% of the targets in PLAB. Table 2 shows

the number and percentage of IP addresses for which some

(latency-based) measurement is available in Alidade’s input

data.

MLAB results, in Figure 12, show that Alidade’s geolo-

cation accuracy is significantly higher compared to the other

geolocation systems; the median error distance for Alidade

is 16km. Alidade’s accuracy is relatively lower than that

of DB1 in the range from 20-200km. However, Alidade’s

overall performance is better than DB1 with all targets ge-

olocated within an error distance of 370km – a factor of six

smaller than the maximum error distance of DB1. This is in

spite of having no measurements whatsoever to any target in

the MLAB data set. HostParser and registry provides hints

for 5% and 27% of the targets, while the remaining 68% of

the targets are geolocated based on the aggregates generated

by the aggregator.

The Ark results show, once again, Alidade and DB1 being

similar in performance while the rest are approximately one

order of magnitude away – 80% of the targets have an error

distance of less than 14km when geolocated using Alidade or

DB1 compared to an error distance of over 100km with the

other systems. The maximum error distance in Alidade and

DB1 is around 3200km which is at least three times smaller

than the maximum error distances in the other geolocation

databases. Recall that Alidade has no measurements, and

hence no latency-based constraints to any targets in the Ark
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Figure 14: GPS Receivers
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Figure 15: NTP Servers
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Figure 16: Pub. vs Pvt. data

data set.

For a comparative analysis using the EuroGT data set, we

selected a set of 100,000 targets uniformly at random from

the data set and evaluated the performance of the different

systems against this sample. Figure 1 presents the ECDFs

of error distance for each database. Since the ground truth

for the EuroGT dataset is only at the city level, we begin

the ECDF plots at an error distance of 10km2. Alidade out-

performs all the geolocation databases with 80% of targets

located with an error of 10km or less.

Alidade remains competitive in the GPS data set, but has

considerably lower accuracy compared to at least three other

geolocation databases in the NTP data set. A small frac-

tion – 7-8% – of the targets in this data set contain mea-

surements in Alidade’s inputs while the majority have no

latency-based measurements. Since we do not know how

the different commercial geolocation databases make their

location predictions for different targets, we cannot answer

how they perform better in this or any other data set. How-

ever, we found evidence of “hard coded” answers in one of

the widely used commercial geolocation systems. Compar-

ing Alidade answers shows that while Alidade manages to

provide better estimates compared to these hard-coded an-

swers, it also loses in some cases by a huge margin. We

presume that such hard coded answers might be used in gen-

eral by all commercial geolocation systems, but do not have

evidence to prove it. Alidade, however, has no such hard

coded answers.

4.4 Lessons Learned

To gauge the importance of measurement data, we com-

pare ECDFs for those targets for which any kind of measure-

ment data is available (e.g., the target appeared on a tracer-

oute path) with those for which no measurement data is avi-

lable, as shown in Figure 18. We combined targets from all

our ground-truth data sets for this analyses. In Figure 18, the

2We treat all predictions made with an error distance of less than
10km equally and do not differentiate between them.

curve for the targets with measurements is labeled WITH-

MEAS, while that for targets without measurements is la-

beled WITHOUT-MEAS. Of the 102,034 targets, measure-

ment data was available for 62,260 targets, while no mea-

surement data was available for the remaining 39,774 tar-

gets. The plot confirms the hypothesis that it helps to have

measurements in addition to data from the registries or Host-

Parser. Although the improvement from addition of mea-

surements seems minimal, recall that targets without mea-

surements are geolocated using aggregates which might in-

clude other targets with measurements. In other words, mea-

surements indirectly influence the accuracy of targets that

themselves have no measurements.

In the absence of measurements, aggregates may be help-

ful for geolocating a target. It is not obvious, however, whether

any improvements might result from using aggregates when

measurements and other hints are already available for a tar-

get. Figure 18 also plots the impact of aggregates on improv-

ing geolocation accuracy for targets with measurements and

other hints, if any. The SKIPPED-AGG -ECDF contains the

same set of targets represented by that WITH-MEAS-ECDF,

but this time geolocated skipping the use of aggregates. The

gap between these two ECDFs highlights the gains from us-

ing aggregates on targets already having measurements.

Stale input data can easily cripple a geolocation system.

For instance, as the network path between a landmark and

a target in the Internet changes, prediction logic like that

based on the extrapolator, in Section 3.3, will also change.

To demonstate the importance of aligning the input data and

ground-truth data sets closer in the timeline, we geolocated

the 100,000 targets sampled from the EuroGT dataset using

two different sets of input – one gathered from late 2013,

and closer in time to when the ground-truth was obtained,

and the other from early 2014, one quarter or more away

from the ground-truth data collection. Figure 17 shows that

the results using input data from 2014 have approximately

20% fewer targets with an error distance of 10km or less.

While measurements may not help in pinning down where
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an IP is (except when it is very small), it helps to weed out

impossible answers. As an example, Apple has 17.0.0.0/8

and it is likely that most geolocation databases would have

the majority (if not all) of the Apple IP space to be in Cu-

pertino, California based on registry information. However,

with a measurement data like the one below, it is clear that

this particular IP from Apple is somewhere in Asia (and may

be in Hong Kong) and definitely not in Cupertino, Califor-

nia. With measurement data, Alidade will produce a feasible

area where an IP can be. Such unique geolocation feature

from Alidade provides a way to check if the answers from a

geolocation DB is incorrect (like the example IP from Apple

above). From a recent run, Alidade has feasible answer areas

for about 500 million with equivalent radius ranging from a

few km to thousands of km, without observable concentra-

tion in a particular equivalent answer radius. Using this data,

we perform a check against the answers from 3 different

commercial geolocation DB and identify the ones that the

answer would be outside the Alidade feasible answer area.

Figure 19 shows the distribution of the answer area from this

run, and Figure 20 shows the results of incorrect answers

from various geolocation DB. It can be observed that we can

see a non-neglible percentage of incorrect answers from all

these geolocation DB and a higher percentage of incorrect

answers from geolocation DB for Ips with a relatively small

feasible area. Figure 16 shows Alidade’s results for targets

from all the ground-truth data sets from the inputs from a

CDN (PVT) and inputs from iPlane and CAIDA (PUB). We

argue that relatively low diversity of landmarks and lack of

really short measurements show poor results when using the

public datasets.

5. FUTURE WORK

Perhaps the most pressing work that we would like to

tackle in the future is to evaluate Alidade against other large

ground-truth data sets. The challenge, of course, lies in ob-

taining such data sets. In addition, several enhancements

to Alidade are now in the works. Alidade is already IPv6

compatible, but at present, we do not have much input data

related to IPv6. Geolocating mobile devices is a big chal-

lenge. Long term, we would like to be able to identify which

addresses are being used by mobile devices and, if possible,

to estimate the range of locations at which each address is

used.

6. CONCLUSION

This paper presents Alidade, a geolocation system that

borrows and builds on the best techniques from many pre-

vious systems. Unlike nearly all geolocation systems re-

ported in the academic literature, however, Alidade does not

perform any active probing on its own, but instead precom-
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putes predictions for all IP addresses prior to fielding any

queries. Alidade competes more directly with commercial

geolocation databases, and our analysis shows that Alidade

is competitive a number of them on six different sets of tar-

gets for which ground-truth physical locations are known.

While we do not know the details of how the competing

databases are compiled, we hypothesize that Alidade makes

much more extensive use of network measurement data. Our

analysis also shows that while no one source of data suf-

fices to provide very accurate predictions, when these data

sources are combined in the right way the overall accuracy

can be quite high. We also show that measurement data can

be used to filter out geolocation hints from other sources that

are not consistent with constraints derived from converting

these measurements into distances by multiplying them with

two-thirds the speed of light.

7. REFERENCES

[1] Akamai Technologies, Inc. EdgePlatform.

http://www4.akamai.com/html/

technology/products/edgescape.html,

2013.

[2] M. J. Arif, S. Karunasekera, and S. Kulkarni.

GeoWeight: Internet Host Geolocation Based on a

Probability Model for Latency Measurements. In

Proceedings of the Thirty-Third Australasian

Conferenc on Computer Science - Volume 102, ACSC

’10, pages 89–98, Darlinghurst, Australia, Australia,

January 2010. Australian Computer Society, Inc.

[3] Sean M. Burke and Tomaz Solc. Unidecode, 2013.

[4] CAIDA. Archipelago measurement infrastructure.

http://www.caida.org/projects/ark/,

2013.

[5] CAIDA. AS Rank: AS Ranking.

http://as-rank.caida.org/, 02/19/2013

2013.

[6] Nicole Caruso. A Distributed System For Large-Scale

Geolocalization Of Internet Hosts. diploma thesis,

Cornell University, Ithaca, NY, 2011.

[7] United States of America Census Bureau.

TIGER/Line Shapefiles. http://www.census.

gov/geo/www/tiger/shp.html, 2012.

[8] Frank Dabek, Rox Cox, Frans Kaashoek, and Robert

Morris. Vivaldi: A Decentralized Network Coordinate

System. In ACM SIGCOMM, pages 15–26, August

2004.

[9] H. Edelsbrunner, D. Kirkpatrick, and R. Seidel. On the

Shape of a Set of Points in the Plane. IEEE Trans. Inf.

Theor., 29(4):551–559, September 2006.

[10] Brian Eriksson, Paul Barford, Bruce Maggs, and

Robert Nowak. Posit: a lightweight approach for IP

geolocation. SIGMETRICS Perform. Eval. Rev.,

40(2):2–11, October 2012.

[11] Brian Eriksson, Paul Barford, Joel Sommers, and

Robert Nowak. A Learning-Based Approach for IP

Geolocation. In Proc. of the 11th International Conf.

on Passive and Active Measurement, PAM’10, pages

171–180, Berlin, Heidelberg, April 2010.

Springer-Verlag.

[12] Michael J. Freedman, Mythili Vutukuru, Nick

Feamster, and Hari Balakrishnan. Geographic Locality

of IP Prefixes. In Proceedings of the 5th ACM

SIGCOMM conference on Internet Measurement, IMC

’05, pages 13–13, Berkeley, CA, USA, 2005. USENIX

Association.

[13] Phillipa Gill, Yashar Ganjali, Bernard Wong, and

David Lie. Dude, where’s that IP? Circumventing

measurement-based IP geolocation. In Proceedings of

the 19th USENIX conference on Security, USENIX

Security’10, pages 16–16, Berkeley, CA, USA, 2010.

USENIX Association.

[14] Bamba Gueye, Artur Ziviani, Mark Crovella, and

Serge Fdida. Constraint-Based Geolocation of Internet

Hosts. In ACM Internet Measurement Conference,

Taormina, Sicily, Italy, October 2004.

[15] Chuanxiong Guo, Yunxin Liu, Wenchao Shen, H.J.

Wang, Qing Yu, and Yongguang Zhang. Mining the

Web and the Internet for Accurate IP Address

Geolocations. In INFOCOM 2009, IEEE, pages

2841–2845, 2009.

[16] Robert Hijmans. Global Administrative Areas.

http://www.gadm.org/, 2012.

[17] IP2Location.com. IP2Location.

http://www.ip2location.com/, 2013.

[18] Ethan Katz-Bassett, John P. John, Arvind

Krishnamurthy, David Wetherall, Thomas Anderson,

and Yatin Chawathe. Towards IP Geolocation Using

Delay and Topology Measurements. In Proceedings of

the 6th ACM SIGCOMM conference on Internet

measurement, IMC ’06, pages 71–84, New York, NY,

USA, October 2006. ACM.

[19] S. Laki, P. Mátray, P. Hága, T. Sebok, I. Csabai, and

G. Vattay. Spotter: A Model Based Active

Geolocation Service. In IEEE INFOCOM, April 2011.

[20] Matthew Luckie, Bradley Huffaker, Amogh

Dhamdhere, Vasileios Giotsas, and kc claffy. As

relationships, customer cones, and validation. In

Proceedings of the 2013 Conference on Internet

Measurement Conference, IMC ’13, pages 243–256,

New York, NY, USA, 2013. ACM.

[21] Harsha V. Madhyastha, Tomas Isdal, Michael Piatek,

Colin Dixon, Thomas Anderson, Arvind

Krishnamurthy, and Arun Venkataramani. iPlane: An

Information Plane for Distributed Services. In OSDI

’06: Proceedings of the 7th symposium on Operating

systems design and implementation, pages 367–380,

Berkeley, CA, USA, 2006. USENIX Association.

[22] MaxMind, Inc. GeoIP City. http://www.

maxmind.com/en/geolocation_landing,

2013.

13



[23] Donald R. Morrison. PATRICIA: Practical Algorithm

To Retrieve Information Coded in Alphanumeric. J.

ACM, 15(4):514–534, oct 1968.

[24] Net Industries, LLC. HostIP.info.

http://www.hostip.info, 2013.

[25] T. S. Eugene Ng and Hui Zhang. Towards Global

Network Positioning. In Proceedings of the 1st ACM

SIGCOMM Workshop on Internet Measurement, IMW

’01, pages 25–29, New York, NY, USA, November

2001. ACM.

[26] Venkata N. Padmanabhan and Lakshminarayanan

Subramanian. An Investigation of Geographic

Mapping Techniques for Internet Hosts. In

Proceedings of ACM SIGCOMM conference, San

Diego, CA, USA, August 2001.

[27] Ingmar Poese, Steve Uhlig, Mohamed Ali Kaafar,

Benoit Donnet, and Bamba Gueye. IP Geolocation

Databases: Unreliable? SIGCOMM Comput.

Commun. Rev., 41(2):53–56, April 2011.

[28] Neil Spring, Ratul Mahajan, David Wetherall, and

Thomas Anderson. Measuring ISP Topologies With

Rocketfuel. IEEE/ACM Trans. Netw., 12:2–16,

February 2004.

[29] Yong Wang, Daniel Burgener, Marcel Flores,

Aleksandar Kuzmanovic, and Cheng Huang. Towards

Street-Level Client-Independent IP Geolocation. In

Proceedings of the 8th USENIX conference on

Networked systems design and implementation,

NSDI’11, pages 27–27, Berkeley, CA, USA, April

2011. USENIX Association.

[30] Bernard Wong, Aleksandrs Slivkins, and Emin Gün

Sirer. Meridian: A Lightweight Network Location

Service without Virtual Coordinates. In ACM

SIGCOMM, volume 35, pages 85–96, August 2005.

[31] Bernard Wong, Ivan Stoyanov, and Emin Gün Sirer.

Octant: A Comprehensive Framework for the

Geolocalization of Internet Hosts. In NSDI, April

2007.

[32] Inja Youn, Brian L. Mark, and Dana Richards.

Statistical Geolocation of Internet Hosts. In ICCCN,

pages 1–6, 2009.

14


