
Tolerating SDN Application Failures with LegoSDN.

Balakrishnan Chandrasekaran
Duke University

balac@cs.duke.edu

Theophilus Benson
Duke University

tbenson@cs.duke.edu

Categories and Subject Descriptors

C.2 [Computer Communication Networks]: Network Architec-

ture and Design; C.4 [Performance of Systems]: Reliability, avail-

ability and serviceability

Keywords

Software-Defined Networking; Fault Tolerance

1. INTRODUCTION
Despite Software Defined Network’s (SDN) proven benefits,

there remains significant reluctance in adopting it. Amongst the

issues that hamper SDN’s adoption two stand out: reliability and

fault tolerance. In an SDN deployment, there are four main fail-

ure scenarios: controller server failures (hardware failures), con-

troller crashes (bugs in the controller code), network device failures

(switch, application server or link failure), and SDN application

(SDN-App) crashes (bugs in the application code). While much

focus has been on overcoming hardware and network device fail-

ures [7–9] and debugging SDN-Apps and/or the ecosystem [2,4–6],

little has been done to protect SDN-Apps against failures.

Fault-tolerant design has been studied extensively in different

contexts, viz., operating systems and application-servers. Unfor-

tunately, techniques like reboot [1] or replay [10] cannot be applied

direcly to the SDN control plane: certain fundamental assumptions

do not hold true in the SDN ecosystem and we cite here three such

issues. First, both the network and the SDN-Apps contain state,

and rebooting [1] the SDN-App will eliminate this state and con-

sequently, introduce inconsistency issues. Second, the state of an

SDN-App might be possibly interdependent on the state of other

SDN-Apps. Reboots of an SDN-App, hence, can potentially af-

fect this entire ecosystem. Third, replaying events [10] to recover

this state implicitly assumes that the bugs are non-deterministic (or

transient) and thus would not be encountered during replay. How-

ever, we argue that given the event driven nature of SDN-Apps,

bugs will most likely be deterministic.

In this work, we focus on application crashes because the con-

troller code represents a common layer that is highly re-used and

thus has a lower probability of bugs. Further, application code is

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage, and that copies bear this notice and the full ci-

tation on the first page. Copyrights for third-party components of this work must be

honored. For all other uses, contact the owner/author(s). Copyright is held by the

author/owner(s).

http://dx.doi.org/10.1145/2620728.2620781.

more likely to be provided by third party entities with limited test-

ing – a trend that is expected to become more prevalent given the re-

cent success of open-source controllers, e.g, HP’s SDN App Store.

The principle position of this paper is that availability is of up-

most concern – second only to security. There exists a fate-sharing

relationship between the SDN-Apps and controllers, where-in the

crash of the former induces a crash of the latter, and thereby, af-

fecting availability. The issue is symptomatic of the lack of proper

abstractions between the controller and the SDN-Apps. Our solu-

tion to this issue is a radical re-design of the controller architecture

centering around a set of abstractions that enable two key features:

• Promote isolation and eliminate the fate-sharing relationship

between the entities of an SDN ecosystem.

• Support the notion of network-wide transactions to manage

the explicit and implicit relationships between various SDN-

Apps running on a controller; transactions help in guarantee-

ing consistency across SDN-Apps.

The re-design allows us to safely run SDN-Apps with a best-

effort model that overcomes SDN-App failures by detecting failure

triggering events, and ignoring or transforming the events. Ignor-

ing or transforming events, however, compromises the SDN-Apps’

ability to completely implement its policies; thus, compromises

completeness. The challenge lies in detecting faults (determining

when to compromise completeness), in determining how to over-

come the faults (how much to compromise), and in ensuring safety

while performing fault recovery (compromising completeness).

Our proposal calls for a re-design of the controller to support

two key abstractions: (1) isolate SDN-Apps running on a controller

from one another and from the controller itself, and (2) bundle op-

erations issued by the controller or SDN-Apps with implicit or ex-

plicit dependencies into one atomic transaction that facilitates roll-

back or recovery operations without sacrificing consistency. We

present LegoSDN that demonstrates the power and utility of these

abstractions.

2. RE-THINKING SDN CONTROLLERS
We argue that the controller’s inability to tolerate bugs in ap-

plications is symptomatic of a larger endemic issue the design of a

controller’s architecture. We present LegoSDN, a system that trans-

parently modifies the application-controller interface via two com-

ponents: AppVisor (§2.1) and NetLog (§2.2). To offer a glimpse of

the new capabilities that LegoSDN provides, we discuss the design

of Crash-Pad (§2.3), a system that provides failure detection and

recovery support. LegoSDN’s components are regular SDN-Apps

running within the controller and serve to demonstrate the benefits

of a controller re-design supporting our abstractions.

HotSDN’14, August 22, 2014, Chicago, Illinois, USA. 
ACM 978-1-4503-2989-7/14/08. 

235



2.1 Isolation and Modularity: AppVisor
An SDN controller should be designed and architected like any

platform that allows third-party code to execute, in isolated mod-

ules with clearly defined fault and resource allocation boundaries.

Further, we make the fundamental assumption that applications

may become momentarily unavailable due to failures. The assump-

tion is in fact a requirement to catalyse the adoption of the SDN

ecosystem; it allows developers to rapidly protytpe and deploy ap-

plications.

We recommend that the communication protocol between the

controller and SDN-Apps include both a time-out and retry mech-

anism. Aside from improving availability, we argue that this isola-

tion opens up a wide range of novel use cases: per-application re-

source limits, application migration, multi-version software testing,

and allows for certain seamless controller upgrades. We note that

this isolation introduces additional latency into the control-loop but

argue that such additional latency is acceptable as introducing the

controller into the critical-path already slows down the network by

a factor of four [3].

We designed the AppVisor by building on well studied and widely

used isolation techniques used in Operating Systems. The AppVi-

sor separates the address space of SDN-Apps from each other and,

more importantly, from the controller by running them in differ-

ent processes (or JVMs). In the context of fault-tolerance this

isolation ensures that crashes of any SDN-App do not affect other

SDN-Apps or the controller.

2.2 Network Transactions: NetLog
Network policies are atomic and often span multiple devices thus

requiring many network actions. Controllers, however, treat these

actions (or events) independently. We propose that these events be

treated together as an atomic operation; failure of either an SDN-

App or action generated by one should trigger a network-wide roll-

back on all related events. The controller should expose the net-

work as a transactional system that supports the grouping of multi-

ple events into an atomic operation (or update).

NetLog leverages the insight that each control messages that

modify network state is invertible: for every state altering control

message, A, there exists another control message, B, that undoes

A’s state change. Not surprisingly, undoing a state change is imper-

fect as certain network state is lost. For instance, while it is possible

to undo a flow delete event, by adding the flow back to the network,

the flow time-out and flow counters cannot be restored. Conse-

quently, NetLog, stores and maintains the timeout and counter in-

formation of a flow table entry before deleting it. Therefore, should

NetLog need to restore a flow table entry, it adds it with the appro-

priate time-out information. For counters, it stores the old counter

values in a counter-cache and updates the counter value in mes-

sages (viz., statistics reply) to the correct one based on values from

its counter-cache. In the context of fault-tolerance NetLog en-

sures that the network-wide state remains consistent regardless of

failures.

2.3 Surviving amidst failures: Crash-Pad
Consider the two trends: (1) 80% of bugs in production quality

software do not have fixes at the time they are encountered [11], and

(2) bugs in SDN applications will like be deterministic. Leveraging

these trends, we aim to build Crash-Pad, a system that overcomes

application failures by detecting failure-triggering events and ig-

noring or transforming these events. Crash-Pad builds on the fault

containment provided by AppVisor and the atomic updates pro-

vided by NetLog.

The act of ignoring or transforming events compromises an ap-

plication’s ability to completely implement its policies (complete-

ness), and through the design of Crash-Pad, we aim to explore and

provide insight into certain key design questions in this context.

When to compromise completeness? SDN applications are largely

event driven and in most situations, the cause of a failure is just the

last event processed by an application before failure. We clone an

application (or take a snapshot of its state) prior to its processing of

an event and hence, should failure occur, we can revert to the state

prior to the failure. However, replay of the offending event most

likely will cause the application to crash. Therefore, we apply a

completeness-compromising transformation on the offending event

prior to the replay.

How much of completeness to compromise? We envision Crash-

Pad to provide a simple interface through which operators can spec-

ify policies (completeness-compromising transformations) that dic-

tate how to compromise completeness when a crash is encountered.

In the initial straw-man, we aim to make available two basic poli-

cies: (1) Absolute Compromise ignores the event (sacrificing com-

pleteness) which causes the crash and makes SDN-Apps failure

oblivious, and (2) No Compromise allows the SDN-App to crash,

thus sacrificing availability to ensure completeness.

How to specify the availability-completeness trade-off ? For se-

curity applications, network operators may be unwilling to com-

promise on the completeness of certain events. To account for this,

we envision a simple policy language that allows operators to spec-

ify, on a per application basis, the set of events, if any, that they are

willing to compromise on.

How to alert operators of crashes or compromises? Our goal is

to make the SDN-Apps and not the SDN-App developers oblivious

to failures, thus, when subverting a failure, Crash-Pad will gener-

ate a problem ticket from the captured stack-traces (or core dump),

controller logs and the offending event. The ticket can help devel-

opers to triage the SDN-App’s bug.

3. REFERENCES
[1] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and A. Fox.

Microreboot — A Technique for Cheap Recovery. In OSDI 2004.

[2] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and J. Rexford. A
NICE Way to Test Openflow Applications. In NSDI 2012.

[3] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. DevoFlow: Scaling Flow Management for
High-performance Networks. In SIGCOMM 2011.

[4] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières, and
N. McKeown. I Know What Your Packet Did Last Hop: Using
Packet Histories to Troubleshoot Networks. In NSDI 2014.

[5] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarifis, and
P. Kazemian. Leveraging SDN Layering to Systematically
Troubleshoot Networks. In HotSDN 2013.

[6] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. VeriFlow:
Verifying Network-wide Invariants in Real Time. In HotSDN 2012.

[7] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix:
A Distributed Control Platform for Large-scale Production Networks.
In OSDI 2010.

[8] M. Kuźniar, P. Perešíni, N. Vasić, M. Canini, and D. Kostić.
Automatic Failure Recovery for Software-defined Networks. In
HotSDN 2013.

[9] M. Reitblatt, M. Canini, A. Guha, and N. Foster. FatTire: Declarative
Fault Tolerance for Software-defined Networks. In HotSDN 2013.

[10] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M. Levy.
Recovering Device Drivers. ACM Trans. Comput. Syst., 24, Nov.
2006.

[11] A. P. Wood. Software Reliability from the Customer View.
Computer, 36(8):37–42, Aug. 2003.

236




