
Tolerating SDN Application Failures with LegoSDN

Balakrishnan Chandrasekaran, Theophilus Benson
Duke University

{balac,tbenson}@cs.duke.edu

ABSTRACT

Despite Software Defined Network’s (SDN) proven benefits,

there remains significant reluctance in adopting it. Among

the issues that hamper SDN’s adoption two stand out: re-
liability and fault tolerance. At the heart of these issues

is a set of fate-sharing relationships: The first between the

SDN-Apps and controllers, where-in the crash of the former

induces a crash of the latter, and thereby affecting availabil-

ity; and, the second between the SDN-App and the network,

where-in a byzantine failure e.g., black-holes and network-

loops, induces a failure in the network, and thereby affect-

ing network availability. The principal position of this pa-

per is that availability is of utmost concern – second only

to security. To this end, we present a re-design of the con-

troller architecture centering around a set of abstractions to

eliminate these fate-sharing relationships, and make the con-

trollers and network resilient to SDN-App failures. We il-

lustrate how these abstractions can be used to improve the

reliability of an SDN environment, thus eliminating one of

the barriers to SDN’s adoption.

Categories and Subject Descriptors

C.2 [Computer Communication Networks]: Network Ar-

chitecture and Design; C.4 [Performance of Systems]: Re-

liability, availability and serviceability

Keywords

Software-Defined Networking; Fault Tolerance

1. INTRODUCTION

Software Defined Networking (SDN) has made great

strides in the past few years, with active involvement from

both academia and the industry. Inspite of SDN’s benefits

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HotNets-XIII, October 27–28, 2014, Los Angeles, CA, USA.
Copyright 2014 ACM 978-1-4503-3256-9/14/10 ... $15.00
http://dx.doi.org/10.1145/2670518.2673880 .

and the industry endorsements, however, there remains sig-

nificant reluctance in SDN’s adoption. Amongst the factors

impeding the adoption of SDN, two stand out: reliability and

fault tolerance. In an SDN deployment, there are four main

failure scenarios: controller server failures (hardware fail-

ures), controller crashes (bugs in the controller code), net-

work device failures (switch, end-host or link failures), and

SDN application (SDN-App) crashes (bugs in the applica-

tion code). While much focus has been on overcoming hard-

ware and network device failures [22, 25, 21], and debug-

ging SDN-Apps and the ecosystem [15, 16, 10, 22], little

has been done to protect SDN-Apps against failures.

Fault-tolerant design has been studied extensively in dif-

ferent contexts, viz., operating systems and application-

servers. Unfortunately, techniques like reboot [9] or re-

play [30] cannot be applied directly to the SDN control

plane: certain fundamental assumptions of these techniques

do not hold true in the SDN ecosystem. First, both the net-

work and the SDN-Apps contain state, and rebooting [9] the

SDN-App will result in loss of state and consequently, intro-

duce inconsistency issues (the SDN-App’s view of the net-

work and the actual network state might no longer be the

same). Second, the state of an SDN-App might be pos-

sibly interdependent on the state of other SDN-Apps. Re-

boots of an SDN-App, hence, can potentially affect this en-

tire ecosystem. Third, naïvely replaying events [30] to re-

cover this state implicitly assumes that the bugs are non-

deterministic (or transient) and thus would not be encoun-

tered during replay. However, we argue that given the event-

driven nature of SDN-Apps, bugs will most likely be deter-

ministic.

In this work, we focus on SDN-App failures, fail-stop

crashes and byzantine failures, and not on controller failures

because the controller code represents a common layer that

is highly reused and, thus, has a lesser likelihood of contain-

ing bugs. The principal position of this paper is that avail-

ability is of upmost concern – second only to security.

We argue that the availability of an SDN controller is

reduced by the existence of two fate-sharing relationships

in the SDN ecosystem: The first between the SDN-Apps

and controllers, where-in the crash of the former induces a

crash of the latter, and thereby affecting availability; and the

1

Generic Controller Stack Floodlight Stack

Application RouteFlow

Controller FloodLight

Server Operating System Ubuntu

Server Hardware Dell Blade

Table 1: SDN Stack Illustration

second between the SDN-App and the network, where-in a

byzantine failure within an SDN-App may lead to the vi-

olation of a network safety property, and thereby affecting

network availability. The issue is symptomatic of the lack

of proper abstractions between the controller and the SDN-

Apps, and also between the SDN-Apps and the network. Our

solution to this issue is a re-design of the controller architec-

ture centering around a set of abstractions that enable two

new features:

• Isolating the SDN-Apps from the Controller. Pro-

mote isolation and eliminate the two fate-sharing rela-

tionships.

• Isolating the SDN-Apps from the Network. Sup-

port the notion of network-wide transactions to man-

age the explicit and implicit relationships between var-

ious SDN-Apps running on a controller; transactions in

conjunction with roll-backs help in guaranteeing con-

sistency across SDN-Apps and undoing the impact of

byzantine and fail-stop bugs.

The re-design allows us to safely run SDN-Apps with a

best-effort model that overcomes SDN-App failures by de-

tecting failure triggering events, and ignoring or transform-

ing these events. Ignoring or transforming events, however,

compromises the SDN-Apps’ correctness (ability to com-

pletely implement its policies). The challenge lies in (1)

detecting faults, i.e., determining when to compromise cor-

rectness, (2) in determining how to overcome the faults, i.e.,

how much to compromise, and (3) in ensuring safety while

performing fault recovery (compromising correctness).

Our proposal calls for a re-design of the controller to sup-

port three key abstractions:

1. An isolation layer between SDN-Apps.

2. A transaction layer that bundles operations issued by

the controller or SDN-Apps, with implicit or explicit

dependencies, into one atomic update that facilitates

roll-back or recovery operations without sacrificing con-

sistency.

3. A network roll-back mechanism that accurately and ef-

ficiently undoes transformations to network state.

In this paper, we present LegoSDN a straw-man that em-

bodies the described abstractions by providing AppVisor

– an isolation layer between SDN-Apps, and NetLog – a

network-wide transaction system that supports atomic up-

dates and efficient roll backs. We exemplify the strength of

these abstractions by using them to build Crash-Pad – a fault

tolerance layer that detects crash triggering events and over-

comes them through event transformations. LegoSDN does
not require any modifications to the SDN controller1 or the

SDN-Apps.

2. MOTIVATION AND RELATED WORKS

In this section, we review the properties of a canonical

SDN environment, focusing on the salient interactions be-

tween applications and controllers. We follow up with an

overview of the fault model within SDN environments cou-

pled with a discussion of related works and relevant tech-

niques from other domains, most notably, operating systems

and distributed systems.

2.1 Properties of the SDN Ecosystem

Software-Defined Networking separates the network con-

trol logic from the switches and centralizes it; therefore, fail-

ure of the controller or controller services significantly im-

pacts the network. Table 1 illustrates the layers in a canon-

ical SDN control platform. In platforms such as NoX [31]

and FloodLight [7], failures of any component in the stack

renders the control plane unavailable. Perhaps surprisingly,

in a FloodLight stack, Table 1, an un-handled exception

(fault) in one SDN-App will result in the failure of other

SDN-Apps and the controller itself. Similarly, a segmenta-

tion fault in a NoX SDN-App takes down both the controller

and SDN-App. The crashes of SDN-Apps have a disastrous

effect on the entire platform because of a lack of isolation,

both between the SDN-Apps and the controller, and between

the SDN-Apps themselves.

While certain companies, such as BigSwitch [1], aim to

provide the entire SDN stack as a single vertical, monolithic

bundle, most of the popular controller platforms are released

as open-source software precisely to decouple the stack and

to promote the creation a rich ecosystem of third-party SDN-

Apps. For example, FloodLight [7], a Java controller plat-

form released by BigSwitch, boasts a diverse spectrum of

SDN-Apps ranging from performance enhancing [27, 4, 13],

to security enforcement [13]. In Table 2, we present a small

list of FloodLight SDN-Apps, their purpose, and indicate

whether they are developed by a third-party or developed

(in-house) by the developers of the controller.

Table 2 reinforces the notion that the SDN ecosystem em-

bodies an à la carte system, where-in different portions of

the stack are developed by different entities. Furthermore,

we expect the diversity at each layer to only increase as SDN

grows in popularity. In fact, movements such as the Open-

DayLight Consortium [6] and the SDN-hackathons hosted

by SDN-Hub are already promoting this diversity.

Given the infancy of these SDN-Apps, unfortunately,

many lack a public-facing support forum or bug-tracker.

Luckily, we were able to find a public bug-tracker for the

1The current LegoSDN prototype is designed to work with Flood-
Light.

2

SDN-App FlowScale [5]. Upon examination of this bug-

tracker, we discovered that 16% of the reported bugs re-

sulted in catastrophic exceptions. Furthermore, careful anal-

ysis showed that even now, at the submission of this paper,

one of these bugs still remains open. While these numbers

do not generalize to other SDN-Apps, we note that extensive

studies on software engineering practices show that bugs are

prevalent in most applications and, even worse, most bugs

in production quality code do not have fixes at the time they

are encountered [34].

Application Developer Purpose

RouteFlow [27] Third-Party Routing

FlowScale [4] Third-Party Traffic Engineering

BigTap [2] BigSwitch Security

Stratos [13] Third-party Cloud Provisioning

Table 2: Survey of Popular SDN Applications

2.2 Fault Tolerance in SDN Networks and OS

SDN Fault Tolerance: Fault tolerance within the SDN

environment has been a subject of research for quite some

time. Recent efforts [21, 17] in the context of handling

controller failures focus on recovery from hardware fail-

ures, applying Paxos [23] to ensure robustness to controller

server failures. Unfortunately, such techniques do not pro-

tect the controller against deterministics bugs. Researchers

have also focused on shielding developers from writing ap-

plication code to handle switch failures [25, 22], link fail-

ures, or application server failures [33]. But, surprisingly

little has been done to shield the network and the controller

from application failure, and it is precisely this shortcoming

that LegoSDN addresses. Most specifically, LegoSDN of-

fers a solution to handle failures induced by bugs within the

SDN-Apps. We plan on handling failures arising out of bugs

in controller code in future work.

Bugs in SDN Code: Research efforts in the past few

years [20, 15], have addressed the problem of detecting bugs

that violate network consistency, defined through a set of

network invariants. In an effort more relevant to debugging

of SDN-Apps, STS [28] offers a solution to determine the

minimal set of events required to trigger a bug. These efforts

can prevent bugs in an SDN-App from installing a faulty

rule [20, 15], or help in reproducing the bug to triage the is-

sue [28], but restoring an application once it has crashed is,

for the most part, out of their scope. While we leverage these

efforts, we attack an orthogonal problem, that of overcoming

crashes of SDN-Apps that lead to controller crashes or viola-

tion of network invariants. Our approach allows the network

to maintain availability in the face of SDN-App failures.

OS Fault Tolerance: LegoSDN builds on several key op-

erating system techniques, namely, isolation [9], specula-

tive fixes [26], changes to the operating environment [24],

and checkpoint replay [18, 29]. These techniques, never-

theless, assume that bugs are non-deterministic and, thus,

can be fixed by a reboot [9, 18, 29], or that safety and cor-

rectness can be compromised to improve availability [26,

24]. While LegoSDN compromises correctness for avail-

ability, unlike the previous techniques [9, 18, 29], it does

not, by default, assume non-determinism. Unlike previous

approaches [26, 24], our system provides network opera-

tors with control over the extent to which correctness can be

compromised to guarantee availability. Furthemore, unlike

previous approaches we are able to roll-back the SDN-App’s

output (e.g. the rules installed) by utilizing SDN’s program-

matic control and we are able to modify the failure induc-

ing input (event or message) by leveraging domain specific

knowledge.

3. RE-THINKING SDN CONTROLLERS

The controller’s inability to tolerate crashes of SDN-Apps

is symptomatic of a larger endemic issue in the design of

the controller’s architecture. In this section, we present

LegoSDN— a system that allows the controller to run in

spite of SDN-App crashes. LegoSDN transparently2 modi-

fies the application-controller interface via two components:

AppVisor (§3.1) and NetLog (§3.2). AppVisor is a regular

SDN-App running within the controller, while NetLog is a

standalone program that provides support for rolling back

changes to the network’s state. To offer a glimpse of the new

capabilities that LegoSDN provides, we discuss the design

of Crash-Pad (§3.3), a system that provides failure detection

and recovery support. Crash-Pad serves to demonstrate the

benefits of a controller re-design supporting our abstractions.

3.1 Isolation and Modularity: AppVisor

The SDN controller should be designed and architected

like any platform that allows third-party code to execute,

with SDN-Apps running as isolated modules with clearly

defined fault and resource allocation boundaries. Further,

we make the fundamental assumption that SDN-Apps may

become momentarily unavailable due to failures; bug-free or

crash-free SDN-Apps should be treated exactly as what they

are — an exception, and not the norm.

The AppVisor builds on well-studied isolation techniques

used in Operating Systems. AppVisor’s objective is to sep-

arate the address space of the SDN-Apps from each other,

and more importantly, from that of the controller, by running

them in different processes. The address space separation

enables containment of SDN-App crashes to the processes

(or containers) in which they are running in. Aside from im-

proving availability, this design opens itself to a wide range

of novel use cases: per-application resource limits, applica-

tion migration, multi-version software testing, and allows for

certain seamless controller upgrades.

Not surprisingly, this design calls for a simple communi-

cation protocol between the controller and the isolated SDN-

Apps. We note that serialization and de-serialization of mes-

sages, and the communication protocol overhead introduce

2Neither the controller nor the SDN-App require any code change.

3

additional latency into the control-loop (between the switch

and the SDN-Apps). The additional latency, however, is ac-

ceptable as introducing the controller into the critical-path

(of flow setup or packet processing) already slows down the

network by a factor of four [11].

In the context of fault-tolerance AppVisor ensures, be-

yond any doubt, that failures in any SDN-App do not affect

other SDN-Apps, or the controller.

3.2 Network Transactions: NetLog

Network policies often span multiple devices, and hence,

mechanisms to implement a policy may comprise many net-

work actions (e.g. OpenFlow messages). Controllers treat

these as independent actions. We propose that the actions

associated with any policy must be executed in an atomic

fashion, with all-or-nothing semantics. Failure of either an

SDN-App or an action generated by an SDN-App should

trigger a network-wide roll-back of all related actions of the

concerned policy.

NetLog leverages the insight that each control message

that modifies network state is invertible: for every state al-

tering control message, A, there exists another control mes-

sage, B, that undoes A’s state change. Not surprisingly, un-

doing a state change is imperfect as certain network state is

lost. For instance, while it is possible to undo a flow delete

event, by adding the flow back to the network, the flow time-

out and flow counters cannot be restored. Consequently,

NetLog, stores and maintains the timeout and counter in-

formation of a flow table entry before deleting it. Therefore,

should NetLog need to restore a flow table entry, it adds it

with the appropriate time-out information. For counters, it

stores the old counter values in a counter-cache and updates

the counter value in messages (viz., statistics reply) to the

correct one based on values from its counter-cache.

In the context of fault-tolerance NetLog ensures that the

network-wide state remains consistent regardless of failures.

3.3 Surviving amidst failures: Crash-Pad

Consider the following three trends: (1) 80% of bugs in

production quality software do not have fixes at the time they

are encountered [34], (2) bugs have been found in three of

the dominant controllers [28] (not all controllers were writ-

ten in the same programming language), and (3) bugs in

SDN-Apps are mostly deterministic. We envision Crash-Pad

to leverage these trends and overcome SDN-App failures by

detecting failure-inducing events, and ignoring or transform-

ing these events. To achieve this, Crash-Pad exploits the

fault isolation (or containment) provided by AppVisor, and

the support for atomic updates provided by NetLog.

The act of ignoring or transforming events compromises

an SDN-App’s ability to completely implement its policies

(correctness), and through the design of Crash-Pad, we aim

to explore and provide insight into certain key design ques-

tions in this context.

How to detect a bug? (When to compromise correctness?)

SDN-Apps are largely event-driven and in most situations,

the cause of an SDN-App’s failure is simply the last event

processed by the SDN-App before failure. We classify fail-

ures as follows:

• Fail-stop failures: the SDN-App crashes and it can be

detected using techniques described in Section §4.1.

• Byzantine failures: the output of the SDN-App vio-

lates network invariants, which can be detected using

policy checkers [20].

Crash-Pad takes a snapshot of the state of the SDN-App

prior to its processing of an event and should a failure occur,

it can easily revert to this snapshot. Replay of the offending

event, however, will most likely cause the SDN-App to fail.

Therefore, Crash-Pad either ignores or transforms the event,

referred to as a correctness-compromising operation on the

offending event, prior to the replay.

How to overcome a bug? (How much correctness to

compromise?) Crash-Pad can provide a simple interface

through which operators can specify policies (correctness-

compromising transformations) that dictate how to compro-

mise correctness when a crash is encountered. In this initial

straw-man, we aim to expose three basic policies:

• Absolute Compromise ignores the offending event (sac-

rificing correctness) and makes SDN-Apps failure obliv-

ious

• No Compromise allows the SDN-App to crash, thus

sacrificing availability to ensure correctness.

• Equivalence Compromise transforms the event into an

equivalent one, e.g. a switch down event can be trans-

formed into a series of link down events. Alternatively,

a link down event may be transformed into a switch

down event. This transformation exploits the domain

knowledge that certain events are super-sets of other

events and vice versa.

How to specify the availability-correctness trade-off ? For

security applications, network operators may be unwilling

to compromise on the correctness of certain SDN-Apps, de-

pending on the nature of the event. To account for this,

Crash-Pad can support a simple policy language that allows

operators to specify, on a per application basis, the set of

events, if any, that they are willing to compromise on.

How to alert operators of failures or compromises? Our

research agenda is to make the SDN-Apps and not the SDN-

App developers oblivious to failures. When subverting a

failure, Crash-Pad will generate a problem ticket from the

captured stack-traces generated by the SDN-App, controller

logs and the offending event. The problem ticket can help

developers to triage the SDN-App’s bug.

3.4 Enabling novel techniques

Besides providing an environment where SDN operators

can deploy SDN-Apps without fear of crashing the controller

4

or other SDN-Apps, LegoSDN addresses the following use-

cases that are not achievable in today’s SDN environments:

Enabling Software and Data Diversity in SDNs: A popu-

lar software engineering technique is to have multiple teams

develop identical versions of the same application. The idea

being that most teams will implement the functionality cor-

rectly; the correct output for any given input can be cho-

sen using a majority vote on the outputs from the different

versions. LegoSDN can be used to distribute events to the

different versions of the same SDN-App, and compare the

outputs.

Per Application Resource Limits: Currently, there is no

way to limit the resource consumption of individual SDN-

Apps. Consequently, a rogue SDN-App can consume all

of the server’s resources. With the isolation provided by

LegoSDN, however, an operator can define resource limits

for each SDN-App, thus limiting the impact of misbehaving

applications.

Controller Upgrades: Upgrades to the controller code-

base must be followed by a controller reboot. Such

events also cause the SDN-App to unnecessarily reboot and

lose state. Some SDN-Apps may incorrectly recreate this

state [32]. Furthermore, this state recreation process can re-

sult in network outages lasting as long as 10 seconds [32].

The isolation provided by LegoSDN shields the SDN-Apps

from such controller reboots. Although, designing SDN-

Apps to be stateless can also alleviate this problem, cur-

rently, several SDN-Apps are stateful.

Atomic Network Updates: Katta et al. [19] present a mech-

anism to support consistent network updates; they support

all-or-nothing semantics in the context of network updates

made by SDN-Apps. LegoSDN’s support for transactions

supports similar semantics, and does not require any support

from SDN-App developers. When an application crashes af-

ter installing a few rules, it is not clear whether the few rules

issued were part of a larger set (in which case the transac-

tion is incomplete), or not. LegoSDN can easily detect such

ambiguities and roll back only when required.

4. IMPLEMENTATION

Motivated by its lush support ecosystem 3, we decided to

build LegoSDN to run on the FloodLight stack and demon-

strate the utility of our abstractions. The architectural changes

discussed and the abstractions demonstrated are easily gen-

eralizable to other controllers such as NOX [14], OpenDay-

Light [6] and Beacon [12].

4.1 Prototype

We present an overview of the proposed LegoSDN archi-

tecture and compare it with existing FloodLight architecture

in Figure 1. Although FloodLight’s monolithic architecture

is simpler to manage and visualize, the fate-sharing relation-

ships clearly manifest themselves in the schematic. By run-

ning all components within a single process, the monolithic

3FloodLight project boasts the world’s largest SDN ecosystem [8]

architecture makes it infeasible to provide any fault isola-

tion; failure of any one component, implies failure of the

entire stack.

Operating System

Controller JVM

App1 App2 …

Controller

I/O

FloodLight Architecture Proposed LegoSDN Architecture

Checkpoint/Recovery

Application JVM

AppVisor Stub

I/O

App1

Checkpoint/Recovery

Application JVM

AppVisor Stub

I/O

App2

Operating System

Controller JVM

Controller

I/O

AppVisor Proxy

NetLog

I/O

Figure 1: Schematic of LegoSDN Prototype

In LegoSDN, there are two parts to the AppVisor: AppVi-

sor Proxy and AppVisor Stub. The former runs as an SDN-

App in the controller, while the latter runs as a stand-alone

application hosting an SDN-App, as shown in Figure 1. The

proxy and stub communicate with each other using UDP.

The proxy dispatches the messages it receives from the con-

troller to the stub, which in turn delivers it to the SDN-App.

The message processing order in LegoSDN is, for all pur-

poses, identical to that in the FloodLight architecture.

The stub is a stand-alone Java application that launches an

SDN-App. Once started the stub connects to the proxy and

registers the SDN-App, and its subscriptions (what message

types it intends to process) with the proxy. The proxy in turn

registers itself for these message types with the controller

and maintains the per-application subscriptions in a table.

The stub is a light-weight wrapper around the actual SDN-

App and converts all calls from the SDN-App to the con-

troller to messages which are then delivered to the proxy.

The proxy processes these messages, calls the appropriate

methods in the controller and returns the responses. In other

words, the stub and proxy implement a simple RPC-like

mechanism. The proxy uses communication failures with

the stub to detect that the SDN-App has crashed. To fur-

ther help the proxy in detecting crashes quickly, the stub also

sends periodic heart beat messages.

For checkpointing and recovery, we use Checkpoint and

Restore In Userspace (CRIU) [3]. The proxy creates a check-

point of an SDN-App process (or JVM) prior to dispatching

every message. In a normal scenario where the SDN-App

processes the message and returns the responses, the proxy

simply ignores the checkpoint created. In the event of crash,

however, the proxy restores the SDN-App to the checkpoint

(last known state prior to the processing of the message).

Assuming the last message delivered to an SDN-App is the

reason behind the crash, the AppVisor records the message

5

along with the stack traces and other diagnostic information

gathered during the crash, to help in triaging bugs.

The current prototype is based on the design described

earlier, in Section §3, except that pertaining to NetLog. In

the place of NetLog, our prototype contains a simple buffer

that delays the actions generated by an application from be-

ing installed on the switch, until it is confirmed that the pro-

cessing completed without failure. We note that this is not

practical in a real-world environment and are working on a

better implementation of NetLog that can guarantee perfor-

mance and consistency.

As far as the applications are considered, we were able

to successfully move applications like the LearningSwitch,

Hub, Flooder, bundled with Floodlight to run within the stub

with very minimal changes; we had to comment out use of

services, viz., counter-store, the support for which is still a

work-in-progress.

5. DISCUSSION & ON-GOING WORK

As part of ongoing efforts, we plan to extend LegoSDN to

address the following challenges.

Handling failures that span multiple transactions: Cur-

rently, LegoSDN can easily overcome failure induced by the

most recently processed event. If the failure is induced as

a cumulation of events, we plan on extending LegoSDN to

read a history of snapshots (or checkpoints of the SDN-App)

and use techniques like STS [28] to detect the exact set of

events that induced the crash. STS allows us to determine

which checkpoint to roll back the application to.

Dealing with concurrency: SDN-Apps, being event-

driven, can handle multiple events in parallel if they from

multiple switches. Fortunately, these events are often han-

dled by different threads and thus we can pin-point which

event causes the thread to crash. Furthermore, we can corre-

late the output of this thread to the input.

Tackling non-deterministic bugs: The approaches pre-

sented in Section §3.3 can be easily modified to overcome

non-deterministic bugs. For instance, LegoSDN can spawn

a clone of an SDN-App, and let it run in parallel to the ac-

tual SDN-App. LegoSDN can feed both the SDN-App and

its clone the same set of events, but only process the re-

sponses from the SDN-App and ignore those from its clone.

This allows for an easy switch-over operation to the clone,

when the primary fails. Since the bug is assumed to be non-

deterministic, the clone is unlikely to be affected.

Avoiding violations of network invariants: Ignoring

events such as switch-down, to overcome an SDN-App-

crash, can result in black-holes. We argue that, in general,

sacrificing the availability a few flows dependent on a switch

is better than sacrificing availability of all flows dependent

on the network. When unacceptable, a host of policy check-

ers [20] can be used to ensure that the network maintains

a set of "No-Compromise" invariants. If any of these "No-

Compromise" invariants are indeed affected, then the net-

work shuts down.

Surviving deterministics controller failures: By pro-

viding fault isolation, our re-design also ensures that an ap-

plication can persist despite a controller crashing. In this

situation, however, the application cannot continue to func-

tion since communication with the network only happens

through the controller. We, however, believe some of the

techniques embodied in the design of Crash-Pad can be used

to harden the controller itself against failures.

Minimizing checkpointing overheads: Crash-Pad cre-

ates a checkpoint after every event, and this can be pro-

hibitively expensive. Thus, we plan to explore a combination

of checkpointing and event replay. More concretely, rather

than checkpointing after every event, we can checkpoint af-

ter every few events. When we do roll back to the last check-

point, we can replay all events since that checkpoint.

6. CONCLUSION

Today, SDN applications are bundled and executed with

the controller code as a single monolithic process; crash of

any one SDN-App brings down the entire controller. Fur-

thermore, an SDN-App crash may result in an inconsistent

network, as the controller is unable to roll back network

changes made by the SDN-App. We argue that these prob-

lems are symptomatic of a lack of proper abstractions be-

tween the controller and the SDN-Apps, and also between

the SDN-Apps and the network

In this paper, we propose a set of abstractions for improv-

ing controller availability: AppVisor (fault isolation) and

NetLog (network transactions). We demonstrate the effi-

cacy of our abstractions by building a system, LegoSDN,

that retrofits an existing controller platform to support these

abstractions without any changes to either the controller or

SDN-Apps. Our system allows SDN operators to readily de-

ploy new SDN-Apps in their networks without fear of crash-

ing the controller, and this is key to enable a thriving SDN

ecosystem. We believe this system represents the first step

towards a controller framework that epitomizes availability

as a first-class citizen.

7. REFERENCES

[1] Big Switch Networks, Inc.

http://goo.gl/sr2Vs.

[2] Big Tap Monitoring Fabric.

http://goo.gl/UHDqjT.

[3] Checkpoint/Restore In Userspace (CRIU).

http://goo.gl/OMb5K.

[4] FlowScale. http://goo.gl/WewH1U.

[5] FlowScale Bug Tracker.

http://goo.gl/4ChWa4.

[6] OpenDaylight: A linux foundation collaborative

project. http://goo.gl/1uobC.

[7] Project Floodlight. http://goo.gl/aV1E40.

[8] Project Floodlight Grows to the World’s Largest SDN

Ecosystem. http://goo.gl/xTslJ1.

6

http://goo.gl/sr2Vs
http://goo.gl/UHDqjT
http://goo.gl/OMb5K
http://goo.gl/WewH1U
http://goo.gl/4ChWa4
http://goo.gl/1uobC
http://goo.gl/aV1E40
http://goo.gl/xTslJ1

[9] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and

A. Fox. Microreboot — A Technique for Cheap

Recovery. OSDI’04.

[10] M. Canini, D. Venzano, P. Perešíni, D. Kostić, and

J. Rexford. A NICE Way to Test Openflow

Applications. NSDI’12.

[11] A. R. Curtis, J. C. Mogul, J. Tourrilhes,

P. Yalagandula, P. Sharma, and S. Banerjee.

DevoFlow: Scaling Flow Management for

High-performance Networks. SIGCOMM ’11.

[12] D. Erickson. The beacon openflow controller. HotSDN

’13.

[13] A. Gember, R. Grandl, A. Anand, T. Benson, and

A. Akella. Stratos: Virtual Middleboxes as First-Class

Entities. (TR1771), 06/2012 2012.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,

N. McKeown, and S. Shenker. NOX: towards an

operating system for networks. ACM SIGCOMM

Computer Communication Review, 38(3), 2008.

[15] N. Handigol, B. Heller, V. Jeyakumar, D. Mazières,

and N. McKeown. I Know What Your Packet Did Last

Hop: Using Packet Histories to Troubleshoot

Networks. NSDI ’14.

[16] B. Heller, C. Scott, N. McKeown, S. Shenker,

A. Wundsam, H. Zeng, S. Whitlock, V. Jeyakumar,

N. Handigol, J. McCauley, K. Zarifis, and

P. Kazemian. Leveraging SDN Layering to

Systematically Troubleshoot Networks. HotSDN ’13.

[17] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,

J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat. B4:

Experience with a globally-deployed software defined

wan. SIGCOMM ’13.

[18] A. Kadav, M. J. Renzelmann, and M. M. Swift.

Fine-grained Fault Tolerance Using Device

Checkpoints. ASPLOS ’13.

[19] N. P. Katta, J. Rexford, and D. Walker. Incremental

Consistent Updates. HotSDN ’13.

[20] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey.

VeriFlow: Verifying Network-wide Invariants in Real

Time. HotSDN ’12.

[21] T. Koponen, M. Casado, N. Gude, J. Stribling,

L. Poutievski, M. Zhu, R. Ramanathan, Y. Iwata,

H. Inoue, T. Hama, and S. Shenker. Onix: A

Distributed Control Platform for Large-scale

Production Networks. OSDI’10.

[22] M. Kuźniar, P. Perešíni, N. Vasić, M. Canini, and

D. Kostić. Automatic Failure Recovery for

Software-defined Networks. HotSDN ’13.

[23] M. Pease, R. Shostak, and L. Lamport. Reaching

Agreement in the Presence of Faults. Journal of the

ACM, 27(2):228–234, 1980.

[24] F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx:

Treating bugs as allergies—a safe method to survive

software failures. SOSP ’05, 2005.
[25] M. Reitblatt, M. Canini, A. Guha, and N. Foster.

FatTire: Declarative Fault Tolerance for

Software-defined Networks. HotSDN ’13.

[26] M. Rinard, C. Cadar, D. Dumitran, D. M. Roy, T. Leu,

and W. S. Beebee, Jr. Enhancing Server Availability

and Security Through Failure-oblivious Computing.

OSDI’04.

[27] C. E. Rothenberg, M. R. Nascimento, M. R. Salvador,

C. N. A. Corrêa, S. Cunha de Lucena, and R. Raszuk.

Revisiting Routing Control Platforms with the Eyes

and Muscles of Software-defined Networking.

HotSDN ’12.

[28] C. Scott, A. Wundsam, B. Raghavan, Z. Liu,

S. Whitlock, A. El-Hassany, A. Or, J. Lai, E. Huang,

H. B. Acharya, K. Zarifis, and S. Shenker.

Troubleshooting SDN Control Software with Minimal

Causal Sequences. SIGCOMM ’14, 2014.

[29] M. M. Swift, M. Annamalai, B. N. Bershad, and H. M.

Levy. Recovering device drivers. ACM Trans. Comput.

Syst., 24(4), Nov. 2006.

[30] M. M. Swift, B. N. Bershad, and H. M. Levy.

Improving the Reliability of Commodity Operating

Systems. ACM Trans. Comput. Syst., 23(1):77–110,

Feb. 2005.

[31] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker.

Applying NOX to the Datacenter. HotNets ’09.

[32] L. Vanbever, J. Reich, T. Benson, N. Foster, and

J. Rexford. HotSwap: Correct and Efficient Controller

Upgrades for Software-defined Networks. HotSDN

’13.

[33] D. Williams and H. Jamjoom. Cementing High

Availability in Openflow with RuleBricks. HotSDN

’13.

[34] A. P. Wood. Software Reliability from the Customer

View. Computer, 36(8):37–42, Aug. 2003.

7

	1 Introduction
	2 Motivation and Related Works
	2.1 Properties of the SDN Ecosystem
	2.2 Fault Tolerance in SDN Networks and OS

	3 Re-thinking SDN Controllers
	3.1 Isolation and Modularity: AppVisor
	3.2 Network Transactions: NetLog
	3.3 Surviving amidst failures: Crash-Pad
	3.4 Enabling novel techniques

	4 Implementation
	4.1 Prototype

	5 Discussion & On-Going Work
	6 Conclusion
	7 References

